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HYDRAULICS.

CHAPTER I
INTRODUCTION.

ARTICLE 1. UNITS OF MEASURE.

The unit of linear measure universally adopted in English
and American hydraulic literature is the foot, which is defined
as one-third of the standard yard. For some minor purposes,
such as the designation of the diameters of orifices and pipes,
the inch is employed, but inches should always be reduced to
feet for use in hydraulic formulas. The unit of superficial
measure is usually the square foot, except for the expression of
the intensity of pressures, when the square inch is more com-
monly employed. _

The units of volume employed in measuring water are the
cubic foot and the gallon. In Great Britain the Imperial gal-
lon is used, and in this country the old English gallon, the
former being 20 per cent larger than the latter. The following
are the relations between the cubic foot and the two gallons:

1 cubic foot =6.232 Imp. gallons = 7.481 U. S. gallons;
1 Imp. gallon = 0.1605 cubic feet = 1.200 U. S. gallons;
1 U.S.gallon = 0.1337 cubic feet = 0.8331 Imp. gallons.

In this book the word gallon will always mean the United
States gallon of 231 cubic inches, unless otherwise stated.
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The unit of weight is the avoirdupois pound, which is also
the unit for measuring pressures. The intensity of pressure
will be measured in pounds per square foot or in pounds per
square inch, as may be most convenient, and sometimes in
atmospheres (Art. 4). Gauges for recording the pressure of
water are usually graduated so as to read pounds per square
inch.

The unit of time used in all hydraulic formulas is the second,
although in numerical problems the time is often stated in
minutes, hours, or days. Velocity is defined as the space passed
over by a body in one second under the condition of uniform
motion, so that velocities are to be always expressed in feet per
second, or are to be reduced to these units if stated in miles per
hour or otherwise.

The unit of work, or energy, is the foot-pound ; that is, one
pound lifted through a vertical distance of one foot. Energy
is potential work, or the work which can be done ; for example,
a moving stream of water has the ability to do a certain amount
of work by virtue of its weight and velocity, and this is called
energy, while the word work is more generally used for that
actually done by a motor which is moved by the water. Power
is work, or energy, done or existing in a specified time, and the
unit for its measure is the horse-power, which is §50 foot-pounds
per second, or 33 000 foot-pounds per minute.

In French and German literature the metric system is em-
ployed ; the meter and centimeter being the units of length, and
their squares the units of superficial measure. The units of
capacity are the cubic meter and the liter, that of weight the
kilogram, and that of time the second. The unit of work is the
kilogram-meter, and one horse-power is 75 kilogram-meters,
which is about 1.5 per cent less than that as defined above.
Students should be prepared to rapidly transform metric into
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American measures, for which purpose a table of equivalents
giving logarithms will be found most convenient.*

The motion of water in river channels, and its flow through
orifices and pipes, is produced by the force of gravity. This
force is proportional to the acceleration of the velocity of a
body falling freely in a vacuum; that is, to the increase in
velocity in one second. The acceleration is measured in feet
per second per second, so that its value represents the number
of feet per second which have been gained in one second by a
falling body.

Problem 1. How many pounds per square ‘inch are
equivalent to a pressure of 70 kilograms per square centimeter?

ARTICLE 2. PHYSICAL PROPERTIES OF WATER.

At ordinary temperatures pure water is a colorless liquid
which possesses perfect fluidity ; that is, its particles have the
capacity of moving over
each other, so that the &= = ——
slightest disturbance of
equilibrium causes a flow.
It is a consequence of this
property that the surface Fi. 1.
of still water is always level; also, if several vessels or tubes be
connected, as in Fig. 1, and water be poured into one of them,
it rises in the others until, when equilibrium ensues, the free
surfaces are in the same level plane.

|
|
I

The free surface of water is in a different molecular condi-
tion from the other portions, its particles being drawn together
by stronger attractive forces, so as to form what may be called
the “skin of the water,” upon which insects walk. The skin is
not immediately pierced by a sharp point which moves slowly

* See LANDRETH'S Metrical Tables for Engineers (Philadelphia, 1883).
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upward toward it, but a slight elevation occurs, and this prop-
erty enables precise determinations of the level of still water
to be made by means of the hook gauge (Art. 50).

At about 32 degrees Fahrenheit a great alteration in the
molecular constitution of water occurs, and ice is formed. If a
quantity of water be kept in a perfectly quiet condition, it is
found that its temperature can be reduced to 20° or even to
15°, Fahrenheit, before congelation takes place, but at the
moment when this occurs the temperature rises to 32°. The
freezing-point is hence not constant, but the melting-point of
ice is always at the same temperature of 32° Fahrenheit or 0°
Centigrade.

Ice being lighter than water, forms as a rule upon its sur-
face ; but when water is in rapid motion a variety called anchor
ice may occur. In this case the ice is formed at the surface in
the shape of small needles, which are quickly carried to the
lower strata by the agitation due to the motion; there the
needles adhere to the bed of the stream, sometimes accumufat-
ing to an extent sufficient to raise the water level several feet.*
Anchor ice frequently causes obstructions in conduits and
orifices which lead water to motors.

Water is a solvent of high efficiency, and is therefore never
found pure in nature. Descending in the form of rain it ab-
sorbs dust and gaseous impurities from the atmosphere; flow-
ing over the surface of the earth it absorbs organic and mineral
substances. These affect its weight only slightly as long as it
remains fresh, but when it has reached the sea and become salt
its weight is increased more than two per cent. -The flow of
water through orifices and pipes is only in a very slight degree
affected by the impurities held in solution.

* FrANcCIS in Transactions American Society Civil Engineers, 1881, vol. x.
p. 192.
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The capacity of water for Leat, the latent heat evolved when
it freezes, and that absorbed when it is transformed into steam,
need not be considered for the purposes of hydraulic investiga-
tions. Other physical properties, such asits variation in volume
with the temperature, its compressibility, and its capacity for
transmitting pressures, are discussed in detail in the following
pages. The laws which govern its pressure, flow, and energy
under various circumstances belong to the science of Hydraulics,
and form the subject-matter of this volume.

Prob. 2. What horse-power is required to lift 16000
pounds of water per minute through a vertical height of 21
feet? Ans. 10.2.

ARTICLE 3. THE. WEIGHT OF WATER.

The weight of water per unit of volume depends upon the
temperature and upon its degree of purity. The following
approximate values are, however, those generally employed
except when great precision is required:

1 cubic foot weighs 62.5 pounds;
1 U.S. gallon weighs 8.355 pounds.

These values will be used in this book, unless otherwise. stated,
in the solution of the examples and problems.

The weight per unit of volume of pure distilled water isthe
greatest at the temperature of its maximum density, 39°.3
Fahrenheit, and least at the boiling-point. For ordinary com-
putations the variation in weight due to temperature is not
considered, but in tests of the efficiency of hydraulic motors
and of pumps it should be regarded. The following table is
hence given, which contains the weights of one cubic foot of
pure water at different temperatures as deduced by SMITH
from the experiments of ROSSETTL.*

* HAMILTON SMITH, Jr., Hydraulics : The Flow of Water through Oriﬁ;‘cs,
over Weirs, and through open Conduits and Pipes (London and New York,
1886), p. 14.
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TABLE 1. WEIGHT OF DISTILLED WATER.

T sper |[Tem ture| Pounds Tem: ture| Pou

(Fubreanein| Gubie Raot '|(Faheenhein| Cubic Foot. |(Fahreaneiny| CobieFoor
32° . 62.42 95 62.06 160 61.01
35 62.42 100 62.00 165 60.90
39.3 62.424 105 61.93 170 60.80
45 62.42 110 61.86 175 60.69
50 62.41 115§ 61.79 180 60.59
55 62.39 120 61.72 185 60.48
60 62.37 125 61.64 190 60.36
6s 62.34 130 61.55 195 60.25
70 62.30 135 61.47 200 60.14
75 62.26 140 61.39 205 60.02
8o 62.22 145 61.30 210 59.89
8s 62.17 150 61.20 212 59.84
90 62.12 15§ 61.11

Waters of rivers, springs, and lakes hold in suspension and
solution inorganic matters which cause the weight per unit of
volume to be slightly greater than for pure water. River
waters are usually between 62.3 and 62.5 pounds per cubic foot,
depending upon the amount of impurities and on the tempera-
ture, while the water of some mineral springs has been found
to be as high as 62.7. It appears that, in the absence of specific
information regarding a particular water, the weight 62.5 pounds
per cubic foot is a fair approximate value to use. It also has
the advantage of being a convenient number in computations, for
62.5 pounds is 1000 ounces, or 1942 is the equivalent of 62.5.

In the metric system the weight of a cubic meter of pure
water at a temperature near that of maximum density is taken
as 1000 kilograms, which is the average unit-weight used in
hydraulic computations. This corresponds to 62.426 pounds
per cubic foot.

Brackish and salt waters are always much heavier than fresh
water. For the Gulf of Mexico the weight per cubic foot is
about 63.9, for the oceans about 64.1, while for the Dead Sea
there is stated the value 73 pounds per cubic foot. The weight
of ice per cubic foot varies from §57.2 to 57.5 pounds,
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Prob. 3. How many pounds of water in a cylindrical box
2 feet in diameter and 2 feet deep? How many gallons? How
many kilograms? How many liters?

Prob. 4. In a certain problem regarding the horse-power
required to lift water, the computations were made with the
mean value 62.5 pounds per cubic foot. Supposing that the
actual weight per cubic foot was 62.35 pounds, show that the
error thus introduced was less than one-fourth of one per cent.

ARTICLE 4. ATMOSPHERIC PRESSURE.

The pressure of the atmosphere is measured by the readings
of the barometer. This instrument is a tube entirely exhausted
of air, which is inserted into a vessel containing a liquid. The
pressure of the air on the surface of the liquid causes it to rise
in the tube until it attains a height which exactly balances the
pressure of the air. Or in other words, the weight of the baro-
metric column is equal to the weight of a column of air of the
same cross-section as that of the tube, both columns being
measured upward from the surface of the liquid in the vessel.
The liquid generally employed is mercury, and, owing to its
great density, the height of the column required to balance the
atmospheric pressure is only about 30 inches, whereas a water
barometer would require a height of over 30 feet.

The atmosphere exerts its pressure with varying intensity,
as indicated by the readings of the mercury barometer. At
and near the sea level the average reading is 30 inches, and as
mercury weighs 0.49 pounds per cubic inch at common tem-
peratures, the average atmospheric pressure is taken to be
30 X 0.49 or 14.7 pounds per square inch.

The pressure of one atmosphere is therefore defined to be
a pressure of 14.7 pounds per square inch. Then a pressure of
two atmospheres is 29.4 pounds per square inch. And con-
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versely, a pressure of one pound per square inch may be expressed
as a pressure of 0.068 atmospheres.

The rise of water in a vacuum is due merely to the pressure
of the atmosphere, like that of the mercury in the common
barometer. In a perfect vacuum, water will rise to a height of
about 34 feet under the mean pressure of one atmosphere, for
the specific gravity of mercury is 13.6 times that of pure water,
and as 30 inches is 2.5 feet, 13.6 X 2.5 = 34.0 feet. A water
barometer is impracticable for use in measuring atmospheric
pressures, but it is convenient to know its approximate height
corresponding to a given height of the mercury barometer.
The following table gives in the first column heights of the
mercury barometer, in the second the corresponding pressures
per square inch, in the third the pressures in atmospheres, and
in the fourth the heights of the water barometer. This fourth
column is computed by multiplying the numbers in the first
column by 1.133, which is onetwelfth of 13.6, the specific
gravity of mercury.

TABLE II. ATMOSPHERIC PRESSURE.

Mercury Pressure. Pressure. Water Elevations Boiling-point
; g Barometer. g of W.

Bal:noc'll:ee;er Slt’]?x:?g ﬁlt?ce)‘; Atmospheres. Feet.te Feet. (l"a.hrcna l";:‘i't).
31 15.2 1.03 35.1 — 895 213°.9
30 14.7 I. 34.0 o 212 .2
29 14.2 0.97 32.9 + 925 210 .4
28 13.7 0.93 31.7 1880 208 .7
27 3.2 0.90 30.6 2870 206 .9
26 12.7 0.86 29.5 3900 205 .0
25 12.2 0.83 28.3 4970 203 .I
24 1.7 0.80 27.2 6085 201 .1
23 I11.3 0.76 26.1 7240 199 .0
22 10.8 0.72 24.9 8455 1960 .9
21 10.3 0.69 23.8 9720 194 .7
20 9.8 0.67 22.7 11050 192 .4

This table also gives in the fifth column values adapted
from the vertical scale of altitudes used in barometric work,
which show approximate vertical heights corresponding to



ARrT. 5.] COMPRESSIBILITY OF WATER. 9

barometer readings, provided that the pressure at sea level is
30 inches.* In the last column are given the approximate
boiling-points of water corresponding to the readings of the
mercury barometer.

Prob. 5. What p'ressure in pounds per square inch exists at
the base of a column of water 170 feet high? What pressure
in atmospheres?

ARTICLE 5. COMPRESSIBILITY OF WATER.

The popular opinion that water is incompressible is not
justified by experiments, which show in fact that it is more
compressible than iron or even timber within the elastic limit.
These experiments indicate that the amount of compression is
directly proportional to the applied pressure, and that water is
perfectly elastic, recovering its original form on the removal of
the pressure. The amount of linear compression caused by a
pressure of one atmosphere is, according to the measures of
GRASSI, from 0.000051 at 35° Fahrenheit to 0.000045 at 80°
Fahrenheit.

Taking 0.00005 as a mean value of the linear compression
per atmosphere, the coefficient of elasticity of water is

E =147

= 3700008 = 294 000 pounds per square inch,

which is only one-fifth of the coefficient of elasticify of timber,
and less than one-eightieth that of wrought-iron.}

A column of water hence increases in density from the
surface downward. If its weight at the surface be 62.5 pounds
per cubic foot, at a depth of 34 feet a cubic foot will weigh

62.5 (1 4 0.00005) = 62.503 pounds,

#* PLYMPTON, The Aneroid Barometer (New York, 1878).
4 MERRIMAN'S Mechanics of Materials (New York, 1885), p. q.
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and at a depth of 340 feet a cubic foot will weigh
62.5 (1 + 0.0005) = 62.53 pounds.

The variation in weight, due to compressibility, is hence too
small to be regarded in hydrostatic computations.

Prob. 6. If w be the weight of water per cubic foot at
the surface, show that the weight at a depth of & feet is
w (1 + 0.0000015 &).

ARTICLE 6. THE ACCELERATION OF GRAVITY.

The symbol g is used in hydraulics to denote the accelera-
tion of gravity ; that is, the increase in velocity per second for
a body falling freely in a vacuum at the surface of the earth.
At the end of ¢ seconds from the beginning of the fall, the
velocity of the body is

V=gt

The space, %, passed over in this time, is the product of the
mean velocity, 47, and the number of seconds, ¢, or

k= 3gf.

The relation between the velocity and the space is found by
eliminating # from these two equations, and is

V = ¥agk.

Hence the velocity of a body which has fallen freely through
any height varies as.the square root of that height. This equa-
tion may also be written in the form

_r
_g,

which shows that the height or space varies with the square of
the velocity of the falling body.
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The quantity 32.2 feet per second per second is an approxi-
mate value of g which is often used in hydraulic formulas. It
is, however, well known that the force of gravity is not of con-
stant intensity over the earth’s surface, but is greater at the poles
than at the equator, and also greater at the sea level than on
high mountains. The following formula of PEIRCE, * which is
partly theoretical and partly empirical, gives the value of g in
feet for any latitude /, and any elevation ¢ above the sea level,
¢ being taken in feet:

£ = 32.0804 (1 + 0.0052375 sin® Z)(1 — 0.0000000957¢) :

and from this its value may be computed for any locality.

The greatest value of g is at the sea level at the pole, for
which

l=g0° e=o, whence g = 32'.258.

The least value of g is on high mountains at the equator; for
this there may be taken

/=0° e=10000 feet, whence g = 32.059.
Again, for the United States the practical limiting values are:

l=149° e=o whence g = 32.186;
/= 25° e= 10000 feet, whence & = 32.089.

These results indicate that 32.2 feet is too large for a mean
value of the acceleration.

In the numerical work of this book, the value of the accel-
eration is taken to be, unless otherwise stated,

£ = 32.16 feet per second per second,

*SumrtH’s Hydraulics, p. 19, where may be found a table giving values of

vz
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from which the frequently occurring quantity ¥2¢ is found
to be .
¥2g = 8.02.

If greater precision be required, which will rarely be the case,
£ can be computed from the formula for the particular latitude
and elevation above sea level.

Prob. 7. Compute the value of g for the latitude 40° 36/,
and the elevation 400 feet.

Prob. 8. What is the value of g if the unit of time be one
minute ? Ans. 115 776 feet per minute per minute.

ARTICLE 7. NUMERICAL COMPUTATIONS.

The numerical work of computation should not be carried
<o a greater degree of refinement than the data of the problem
warrant. For instance, in questions relating to pressures, the
data are uncertain in the third significant figure, and hence
more figures than three or four in the final result must be
delusive. Thus, let it be required to compute the number of
pounds of water in a box containing 307.37 cubic feet. Taking
the mean value 62.5 pounds as the weight of one cubic foot,
the multiplication gives the result 19210.625 pounds, but
evidently the decimals here have no precision, since the last
figure in 62.5 is not accurate, and is likely to be less than s, de-
pending upon the impurity of the water and its temperature.
The proper answer to this problem is 19 200 pounds, or per-
haps 19 210 pounds, and this is to be regarded as a probable
average result rather than an exact definite quantity.

The use of logarithrhs is to be recommended in hydraulic
computations, as thercby both mental labor and time are saved.
Four-figure tables are sufficient for all common problems, and
their use is particularly advantageous in cases where the data
are not precise, as thus the number of significant figures in
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results is kept at about three and statements implying great
precision, when none really exists, are prevented. In some
problems five-figure logarithms will be needed, but probably no
hydraulic data are ever sufficiently exact to require the use of
a seven-figure table. Six-figure logarithms should not be em-
ployed if others can be obtained, as their arrangement is not
generally convenient for interpolation.

As this book is mainly intended for the use of students in
technical schools, a word of advice directed especially to them
may not be inappropriate. It will be necessary for students in
order to gain a clear understanding of hydraulic science, or of
any other engineering subject, to solve many numerical prob-
lems, and in this a neat and systematic method should be cul-
tivated. The practice of performing computations on any loose
scraps of paper that may happen to be at hand should not be
followed, but the work should be done in a special book pro-
vided for that purpose, and be accompanied by such explanatory
remarks as may seem necessary in order to render the solution
clear. Such a note-book, written in ink, and containing the
fully worked out solutions of the problems and examples given
in these pages, will prove of great value to every student who
makes it.

Prob. 9. Compute the weight of a column of water 1.1286
inches in diameter and 34.0 feet high at the temperature of
62° Fahrenheit.

Prob. 10. How many gallons of water are contained in a
pipe 4 inches in diameter and 12 feet long? How many
pounds?
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CHAPTER IIL
HYDROSTATICS.

ARTICLE 8. TRANSMISSION OF PRESSURES.

One of the most remarkable properties of water is its
capacity of transmitting a pressure, applied at one point of the
surface of a closed vessel, unchanged in intensity, in all direc-
tions, so that the effect of the applied pressure is to cause an
equal force per square inch upon all parts of the enclosing sur-
face. This is a consequence of the perfect fluidity of the water,
by which its particles move freely over each other and thus
transmit the applied pressure.

An experimental proof of this property is seen in the hydro-
static press, where the force applied to the small piston is ex-
erted through the fluid and produces an equal unit-pressure
at every point on the large piston. The applied force is here
multiplied to any required extent, but the work performed by
the large piston cannot exceed that imparted to the fluid by
the small one. Let 2 and 4 be the areas of the small and
large pistons, and p the pressure in pounds per square unit ap-
plied to 2; then the total pressure on the small piston is pe,
and that on the large piston is p4. Let the distances through
which the pistons move at one stroke of the smaller be &4 and
D. Then the imparted work is pad, and the performed work,
neglecting hurtful resistances, is p4D. Consequently ad = 4D,
and since a is small as compared with A4, the distance D must
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be small compared with &. Here is found an-illustration of the
popular maxim that “ What is gained in force is lost in velocity.”

The pressure existing at any point within a body of water
is exerted in all directions with equal intensity. This im-
portant property follows at once from that of the transmission
of pressure, for this may be regarded as effected by the con-
fined body of water acting as an elastic spring which presses
outwards in all directions. Thus every particle of the water is
in a state of stress, and reacts in all directions with equal in-
tensity. And the same principle applies to a particle within a
body of water whose surface is free, for the pressure which ex-
ists at any point due to the weight above it produces a state of
stress among all the fluid particles.

Prob. 11. In a hydrostatic press a work of one-fourth a
horse-power is applied to the small piston. The diameter of
the large piston is 12 inches, and it moves half an inch per
minute. Find the pressure per square inch in the fluid.

Ans. 1750 pounds.

ARTICLE 9. HEAD AND PRESSURE.

The free surface of water at rest is perpendicular to the di-
rection of the force of gravity, and for badies of water of small
extent this surface may be regarded as a plane. Any depth
below this plane is called “a head,” or the hecad upon any
point is its vertical depth below the level surface. Let % be-
the head and = the weight of a cubic unit of water; then at
the depth /£ one horizontal square unit bears a pressure equal
to the weight of a column of water whose height is 4, and
whose cross-section is one square unit, or w/. But the pres
sure at this point is exerted in all directions with equal inten-
sity. The unit-pressure p at the depth / then is

p=wh; . . . . . . . (D)
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and conversely the depth, or head, for a unit-pressure p is

2 ’
k= 5. 1 e e e e e (I )
If £ be taken in feet and p in pounds per square foot, these

formulas are

p = 62.54,
/£ = 0.016p.

Hence pressure and head are mutually convertible, and in fact
one is often used as synonymous with the other, although really
each is proportional to the other. Any pressure p can be re-
garded as produced by a head 4, which sometimes is called the
‘pressure head.”

In numerical work p is usually taken in pounds per square
inch, while /% is expressed in feet. Thus, the pressure in pounds
per square foot is 62.5%, and the pressure in pounds per square
inch is 3¢ of this; or,

2 = 04344,
k = 2.304p.

Stated in words these rules are :

1 foot head corresponds to 0.434 pounds per square inch;
I pound per square inch corresponds to 2.304 feet head.

These values, be it remembered, depend upon the assump-
tion that 62.5 pounds is the weight of a cubic foot of water,
and hence are liable to variation in the third significant figure
(Art. 3). The extent of these variations for fresh water may
be judged by the following table, which gives multiples of the
above values, and also the corresponding quantities when the
cubic foot is taken as 62.3 pounds.
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TABLE III. HEADS AND PRESSURES.

Pressure in Pounds Head in Feet.
Head per Square lm:!x. ixl: rls:‘ul:::s
in Feet. per Square
w = 6a.5 w =623 Inch. w = 6a.§ w = 6a.3
1 0.434 0.433 1 2.304 2.311
2 0.868 0.865 2 4.608 4.623
3 1.302 1.298 3 6.912 6.934
4 1.736 1.731 4 9.216 9.246
5 2.170 2.163 5 11.520 11.557
6 2.604 2.596 6 13.824 13.868
7 3.038 3.028 7 16. 28 16.180
8 3.472 3.461 8 v 18.432 18.497
9 3.906 3.804 9 20.736 20.803
10 4.340 4.326 I 10 23.040 23.114

The atmospheric pressure, whose average value is 14.7 pounds
per square inch, is transmitted through water, and is to be added
to the pressure due to the head whenever it is necessary to
regard the absolute pressure. This is important in some in-
vestigations on the pumping of water, and in a few other cases
where a partial or complete vacuum is produced on one side of
a body of water. For example, if the air be exhausted from a
small globe, so that its tension is only 5 pounds per square
inch, and it be submerged in water to a depth of 250 feet, the
absolute pressure per square inch on the globe is

P = 0.434 X 250} 14.7 = 123.2 pounds,
and the resultant effective pressure per square inch is
P = 123.2— 5.0 = 118.2 pounds.

Unless otherwise stated, however, the atmospheric pressure

need not be regarded, since under ordinary conditions it acts

with equal intensity upon both sides of a submerged surface.
Prob. 12. What unit pressure corresponds to 230 feet head ?

What head in meters produces a pressure of 10 kilograms per
square centimeter?
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Prob. 13. The pressure in a water pipe in the basement is
74% pounds, while in the fifth story it is only 48 poun&s per
square inch. Find the height of the fifth story above the
basement.

ARTICLE 10. NORMAL PRESSURE.

The total normal pressure on any submerged surface may be
found by the following theorem :
The normal pressure is equal to the product of the weight

of a cubic unit of water, the area of the surface, and the
head on its centre of gravity.

To prove this let 4 be the area of the surface, and imagine
it to be composed of elemen-
tary areas, «,, a,, a,, etc.
each of which is so small that
the unit-pressure over it may
be taken as uniform; let
iy Iy, 1y, etc., be the heads

Fic. 2. on these elementary areas,
and let w denote the weight of a cubic unit of water. The
unit-pressures at the depths %,, 4,, %,, etc,, are wk,, wh,, wh,,
etc. (Art. g), and hence the normal pressures on the elementary
areas a,, a,,a,, etc., are wak,, wah,, wak,, etc. The total
normal pressure P on the entire surface then is

P = w(ak, + af,+ ajr,+ etc).

Now let /Z be the head on the centre of gravity of the surface ;
then, from the definition of the centre of gravity,

all, + ajy, + aje,+etc. = Ak.
Therefore the normal pressure is
P=wdh . « « « . . . (2

which proves the theorem as stated.
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This rule applies to all surfaces, whether plane, curved, or
warped, and however they be cituated with reference to the
water surface. Thus the total normal pressurc upon the sur-
face of a submerged cylinder remains the same whatever be its
position, provided the depth’ of the centre of gravity of "that
surface be kept constant. It is best to take % in feet, 4 in
square feet, and w as 62.5; then P will be in pounds. In case
surfaces are given whose centres of gravity are difficult to de-
termine, they should be divided into simpler surfaces, and then
the total normal pressure is the sum of the normal pressures on
the separate surfaces.

The normal pressure on the base of a vessel filled with water
is equal to the weight of a cylinder of water whose base is the
base of the vessel, and whogse height is the depth of water, and
only in the case of a vertical cylinder does this become equal to
the weight of the water. Thus the pressure on the base of a
vessel depends upon the depth of water and not upon the
shape of the vessel. Also in the case of a dam, the depth of
the water and not the size of the pond determines the amount
of pressure.

The normal pressure on the interior surface of a sphere filled
with water is greater than the weight of the water, for the
weight acts only vertically, while the normal pressures are ex-
erted in all directions. If & be the diameter of the sphere, for-
mula (2) gives

’ P=w-nd' }d = ywnd’,
while the weight of water is
W= w}rd’ = }wnd".

Hence the interior normal pressure is three times the weight
of the water.

Prob. 14. A cone with altitude Z and diameter of base & is
filled with water. Find the normal pressure on the interior
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surface (@) when it is held vertical with basedownward; (¢) when
held horizontal.

Prob. 15. A board 2 feet wide at one end and 2 feet 6
inches at the other is 8 feet long. What is the normal pres-
sure upon each of its sides when placed vertically in water with
the narrow end in the surface?

ARTICLE 11. PRESSURE IN A GIVEN DIRECTION.

The pressure against a submerged plane surface in a given
direction may be found by obtaining the normal pressure by
Art. 10 and computing its component in the required direc-
tion, or by means of the following theorem :

The horizontal pressure on any plane surface is equal to
the normal pressure on its vertical projection; the
vertical pressure is equal to the normal pressure on its
horizontal projection; and the pressure in any direction
is equal to the normal pressure on a projection perpen-
dicular to that direction.

To prove this let 4 be the area of the given surface, repre-
sented by 44 in Fig. 3,and
P the normal pressure upon
it, or P=wAk. Now let it
be required to find the pres-
sure P’ in a direction mak-
ing an angle 6 with the
normal to the given plane.
Draw A’A4’ perpendicular to
the direction of P, and let
A’ be the area of the projection of 4 upon it. The value of
P’ then is

Fie. 3.

P = Pcos § = wAk cos 6.
But A4 cos 6 is the value of 4’ by the construction. Hence
.PI = WA,II,. « o o o o eo° o . (3)

and the theorem is thus demonstrated.
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This theorem does not in general apply to curved surfaces.
But in cases where the head of
water is so great that the pressure
may be regarded as uniform it is
also true for curved surfaces. For
instance, consider a cylinder or
sphere subjected on every ele-
mentary area to the unit-pressure
2 due to the high head £, and let
it be required to find the pressure
in the direction shown by ¢,,9¢,,
and ¢, in Fig. 4. The pressures p,, p,, 2,, etc., on the ele-
mentary areas a,, 4,, a,, etc., are

b = pa, 2, = pa,, p, = pa,, etc,

and the components of these in the given direction are

F1G. 4.

g, = pa, cos b, ¢q,= pa,cosb,, ¢, = pa,cosb,, etc.,
whence the total pressure 7’ in the given direction is
P’ = p(a, cos 0,4 a, cos 6, + a, cos 6, + etc.).

But the quantity in the parenthesis is the projection of the sur-
face on a plane perpendicular to the given direction, or /N,

Hence
P = p X area MN,

-which is the same rule as for plane surfaces.

For the case of a water-pipe let p be the interior pressure per
square inch, and & its diameter in inches. Then for a length
of one inch the force tending to rupture the pipe longitudinally
is pd. This is resisted by the unit stress S in the walls of the
pipe acting over the area 2/, if # be the thickness. As these
forces are equal,

28t = pd,
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which is the fundamental equation for the discussion of the
strength of water-pipes.

Prob. 16. The back of a dam has a slope of 14 to 1. Find
the horizontal pressure per linear foot upon it, the water being
13 feet deep.

Prob. 17. What head of water will burst a pipe 24 inches
in interior diameter and 0.75 inches thick, the tensile strength
of the cast-iron being 20,000 pounds per square inch?

ARTICLE 12. CENTRE OF PRESSURE ON RECTANGLES.

The centre of pressure on a surface submerged in water is
the point of application of the resultant of all the normal pres-
sures upon it. The simplest and probably the most important
case is the following:

If a rectangle be placed with one end in the water surface,
the centre of pressure is distant from that end two-
thirds of its length.

This theorem will be proved by the help of the graphical
illustration shown in Fig. 5. The rectangle, which in practice
might be a board, is placed with
£~ O no— =z its breadth perpendicular to the
—=——= plane of the drawing, so that
P AB represents its edge. It is

required to find the centre of
g Dpressure C. For any head % the

unit-pressure is w# (Art. g), and
hence the unit-pressures on one
side of AB may. be graphically
represented by arrows which form a triangle. Now if a force
P equal to the total pressure is applied on the other side of
the rectangle to balance these unit-pressures, it must be placed
opposite to the centre of gravity of the triangle. Therefore

FiG. s.
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AC equals two-thirds of 4B, and the ruleis proved. The head
on (' is evidently also two-thirds of the head on A.

Another case is that shown in Fig. 6, where the rectangle,
whose length is B,B,, is wholly immersed, the head on B, being
%,,and on B, being %,. Let
AB, =6,,AC = y,and AB,
=4,. Now the normal pres-
sure P, on AB, is applied at
the distance 46, trom A4,
and the normal pressure P,
on 4B, is applied at the dis-
tance $4, from 4. The normal pressure P on B,B, is the dif-
ference of P, and P,, or '

P=P —P;

Fic. 6,

and also, by taking moments about A4 as a centre,
PXJI:;D’ X %b!_Plx%bl’
Now, by Art. 10, the values of P, and P, are, for a rectangle one
unit in breadth,
P=wX b X¥h, P =wXbXitk;
hence P =3w(bje, — b,12);
and inserting these in the equation of moments, the value of
yis
258, —b'A,
= -3— ,b‘llzl - bl/ll )

Now if 8 be the angle of inclination of the plane to the water
surface, .4, = 4, sin§, and %, = 4, sinf. Accordingly, the ex-
pression becomes

_246'=8"
r= gbal _bx’.
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Again, if # be the head on the centre of pressure, y = %’ cosec 6,
b,=h, cosec 8, and b, = %, cosec §. These inserted in the
last equation give

2k =R

# —gll:—lll’.

These formulas are very convenient for computation, as the
squares and cubes may be taken from tables.

If %, equals 4, the above formula becomes indeterminate,
which is due to the existence of the common factor %, — %, in
both numerator and denominator of the fraction; dividing out
this common factor, it becomes

PR Y e YN
YT bt A

from which, if %, =4, =/, there is found the result 2’ = 4.

If #, =0, or 4, =0, y becomes 34, and 4% becomes $%,,
which proves again the special rule given at the beginning of
this article. ’

Prob. 18. A rectangle 4 feet longis immersed in water with
its ends parallel to the surface, the head on one end being 7 feet
and that on the other g feet. Find the head on the centre of
pressure, and also the value of P.

ARTICLE 13. GENERAL RULE FOR CENTRE OF PRESSURE.

For any plane surface submerged in a liquid, the centre of
pressure may be found by the following rule:

Find the moment of inertia of the surface and its statical
moment, both with reference to an axis situated at the
intersection of the plane of the surface with the water
level. Divide the former by the latter, and the quotient
is the perpendicular distance from that axis to the
centre of pressure.
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The demonstration is analogous to that in the last article.
Let, in Fig. 6, B,B, be the trace of the plane surface, which
itself is perpendicular to the plane of the drawing, and C be
the centre of pressure, at a distance y from 4 where the plane
of the surface intersects the water level. Let @, a,, a,, etc., be
elementary areas of the surface, and 4,, 4, , 4, , etc., the heads
upon them, which produce the normal elementary pressures,
wa.k, , wak,, wa,k,, etc. Let y,,,,,, etc, be the distances
from A4 to these elementary areas. Then taking the point 4
as a centre of moments, the definition of centre of pressure
gives the equation

(wa .k, + waj, + wak,+ etc) y =
wa,k, ¥, + waliliyl + wa,/z, I+ etc.

Now let 6 be the angle of inclination of the surface to the
water level; then /4, =y, sin 6, 2, = y,sin 6, £, = y,sin b, etc.
Hence, inserting these values, the expression for y is

— alyl, + a,_y: + alyl’+ etc.
T a9+ a3, +ay, +etc’

The numerator of this fraction is the sum of the products
obtained by multiplying each element of the surface by the
square of its distance from the axis, which is called the moment
of inertia of the surface. And the denominator is the sum of
the products of each element of the surface by its distance from
the axis, which is called the statical moment of the surface.
Therefore

__ moment of inertia _ I
Y = Tstatical moment S °

4)

is the general rule for finding centres of pressure for plane
surfaces.

The statical moment of a surface is simply its area multi-
plied by the distance of its centre of gravity from the given
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axis, as is evident from the definition of centre of gravity. The
moments of inertia of plane surfaces with reference to an axis
through the centre of gravity are deduced in works on theo-
retical mechanics; a few values are:

For a rectangle of breadth 4 and depth &, /= b:iz ;
i i : bd*

For a triangle with base & and altitude d, /= ?6-;

For a circle with diameter &, = ’;‘: .

To find from these the moment of inertia with reference to a
parallel axis, the well-known formula /' = 7444 is to be used,
where A is the area of the surface and 4 the distance from the
given axis to the centre of gravity of the surface, and /7 the
moment of inertia required.

For example, let it be rcquired to find the centre of pres-
sure of a circle which is submerged with one edge in the water
surface. The area of the circle is }wd*, and its statical moment
with reference to the upper edge is t7d* X 44. Then from (4),

nd' =wd' d°

_ 64 " 4 "4 5,

J= nd’ i S_d'
4 "2

hence the centre of pressure of a circle with one edge in the
water surface is at 3 below the centre. Again, for a triangle
submerged with its vertex in the water surface,

bd*® bd 44’

E Y
=3 29 _3,
- bd 2d T4

2 3
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Prob. 19. Find the centre of pressure of the triangle in
Fig. 9 when it is inverted so that its base is in the surface.

Prob. 20. Find the centre of pressure of a circle when verti-
cally submerged in water so that the head on its centre is equal
to two diameters of the circle. Ans. 2.03d.

ARTICLE 14. PRESSURES ON OPPOSITE SIDES OF A PLANE.

In the case of an immersed plane the water presses equally
upon both sides so that no disturbance of the equilibrium re-
sults from the pressure. But in case
the water is at different levels on op-
posite sides of the surface the opposing
pressures are unequal. For example,
the cross-section of a self-acting tide-
gate, built to drain a salt marsh, is
shown in Fig. 7. On the ocean side
there is a head of £, above the sill,
which gives for every linear foot of
the gate the pressure

P =w Xh X3k =3wh' Fic. 7.

which is applied at the distance 34, above the sill. On the
other side the head on the sill is 4,, which gives the pressure

P, =3dwh,,

whose centre of pressure is at }4, above the sill. The result-
ant pressure P is

P=P1—P.=%‘LU(}ZI'—}I:);

and if £ be the distance of the pbint of application of P above
the sill, the equation of moments is

(Pl—'Pl)zz'PlX*/‘I_Plx*h’!

from which & can be computed.
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The action of the gate in resisting the water pressure is like
that of a beam under its load, the two points of support being
at the sill and the hinge. If %z be height of the gate, the reac-
tion at the hinge is, '

2 Ph —Ph,
R:(‘l:',—ll',)z:—-—-3/z ,

and this has its greatest value when %, becomes equal to £,
and £, is zero. In the case of the vertical gate of a canal lock,
which swings horizontally like a door, a similar problem arises
and a similar conclusion results.

Prob. 21. If the head on one side of a tide-gate is 7 feet
and on the other 4 feet, find the resultant pressure and its
point of application above the sill.

Ans. 1031 pounds per linear foot, at 2.82 feet above sill.

ARTICLE 15. MASONRY DaMS.

The preceding articles show that the pressure on the back
of a masonry dam is normal to that surface at every point. If
the back be a plane surface the
— resultant pressure is normal to
=" the plane, and its point of applica-
tion is at two-thirds of the length
from the water level. Thus in
Fig. 8, AC is two-thirds of AB. If
/2 be the head of water above the
base of the dam, and ¢ be the
angle of inclination of the plane of
the back to the vertical, the normal pressure per linear foot of
the dam is, from Art. 10,

Fic. 8.

P=w X ksect X 3h = 3wh' sech,

which shows that the total pressure against the dam varies as
the square of its height. The horizontal component of this
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pressure is 4w#k’, which is the same as the normal pressure
against a wall whose back is vertical.

It is not the place here to enter into the discussion of the
subject of the design of masonry dams, but the two ways in
which they are liable to fail may be noted. The first is that of
sliding along a horizontal joint, as BD; here the horizontal
component of the thrust overcomes the resisting force of friction
acting along the joint. If W be the weight of masonry above
the joint, and f the coefficient of friction, the resisting friction
is fW, and the dam will slide if the horizontal component of
the pressure is equal to or greater than this. The condition
for failure by sliding then is '

twh® = fW.

The second method of failure is that of rotating around the
toe D: this occurs when the moment of P equals the moment
of W with reference to that point; or if / and 7 be the lever-
arms dropped from D upon the directions of P and I, the
condition for failure by rotation is

Pl = Wm.

In practice the joints are so built as to give full security
against sliding, so that the usual method of failure is by
rotation.

As an example of the application of these principles con-
sider a rectangular vertical masonry dam which weighs 140
pounds per cubic foot, and which is 4 feet wide. First, let it
be required to find the height for which it would fail by slid-
ing, the coefficient of friction being 0.75. The horizontal
water pressure is § X 62.5 X 4', and the resisting friction is
0.75 X 140 X 4 X &. Placing these equal, there is found % =
13.4 feet. Secondly, to find the height for which failure will
occur by rotation, the equation of moments is stated with ref-
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erence to the front lower edge, the lever-arm of the pressure

being $4, and that of the wall 2 feet. Hence
X625 XA XI=140X 4 X % X2,

from which there is found 2 = 10.4 feet.

Prob. 22. A dam whose cross-section is a triangle has a
vertical back, is 3 feet wide at the base, and 15 feet high.
Find the height to which the water may rise behind it in order
to cause failure (@) by sliding, and () by rotation, using 0.75
for the coefficient of friction and 140 pounds per cubic foot for
the weight of the masonry.

ARTICLE 16. L0ossS OF WEIGHT IN WATER.

It is a familiar fact that bodies submerged in water lose
part of their weight a man can carry under water a large
stone which would be difficult to lift in air; timber when sub-
merged has a negative weight or tends to rise to the surface.
The following is the law of loss:*’

The weight of a body submerged in water is less than its
weight in air by the weight of a volume of water equal
to that of the body.

To demonstrate this, consider that the submerged body
is acted upon by the water pressure in all directions, and
that the horizontal components of these pressures must bal-
ance. Any vertical elementary prism is subjected to an up-
ward pressure upon its base which is greater than the down-
ward pressure upon its top, since these pressures are due to
the heads. Let /4, be the head on the top of the elementary
prism and Z, that on its basc, and @ the cross-section of the
prism; then the downward pressure is wa/, and the upward
pressure is wak,. The diffcrence of these, wa(k, — £,) is the re-
sultant upward water pressure, and this is equal to the weight
of a column of water whose cross-section is @ and whose height

* Discovered by ARCHIMEDES, about 250 B.C.
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is that of the elementary prism. Extending this to all the
elementary prisms which make up the body, it is seen that the
upward water pressure diminishes its weight by the weight of
a volume of water equal to that of the body.

It is important to regard this loss of weight in constructions
under water. If, for example, a dam of loose stones allows the
water to percolate through it, its weight per cubic foot is less
than its weight in air, so that it can be more easily moved by
horizontal forces. As stone weighs about 150 pounds per cubic
foot in air, its weight in water is only about 150 — 62 == 88
pounds.

Prob. 23. A bar of iron one square inch in cross-section

and oné yard long weighs 10 pounds in air. What is its weight
in water?

ARTICLE 17. DEPTH OF FLOTATION.

When a body floats upon water it is sustained by an upward
pressure of the water equal to its own weight, and this pressure
is the same as the weight of the volume of water displaced by
the body. Let IV’ be the weight of the floating body in air,
and W be the weight of the displaced water; then

W=w .. ... .. .5
Now let = be the depth of flotation of the body; then to find
its value for any particular case 1’ is to be expressed in terms
of the lincar dimensions of the body, and W in terms of the
depth of flotation .

For example, a cone which weighs 2’ pounds per cubic foot
— floats with its base downward as
represented in Fig. o, its altitude
being & and the radius of its base &.

== i = % — The weight of the floating cone is
| I W =« . nd - }d,

FiG. o and the weight of the displaced
water is that of a frustum of the altitude 2, or
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W=w(zb'.;—d—n(d;z&)'d—;f).

Equating these values and solving for z gives the result

4

z=d—d(l —‘—%—)2

which is the depth of flotation. If %’ = @, the cone has the
same density as water, and' £ = &; 'if w’ = o, the cone has no
weight, and 2 = o.

To find the depth of flotation
for a cylinder lying horizontally,
let =’ be its weight per cubic
foot, and » the radius of its cross-
section. The depth of flotation
is DE (Fig. 10), or if # be the
Fio. ro. angle ACE,

g2=7r(1 — cos 6).
The weight of the cylinder for one unit of length is
W =w'. nr,
and that of the displaced water is
W = w(r* arc § — »* sin 6 cos f).

Equating the values of W and W’, and substituting for
sin 6 cos 0 its equivalent # sin 26, there results

7/
. w
2 arc § — sin 20=27r—z;.

From this equation 8 is to be found by trial for any particular
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case, and then s is known. For example, if 2’ = 26.5 pounds
per cubic foot, and 7 = 12 inches,

2 arc § — sin 260 — 2.664 = 0.

To solve this equation, assume values for 6, until finally one is
found that satisfies it; thus:

For 6 = 83°, 2.897 — 0.242 — 2.664 = — 0.009;
.For 6 =83}, 2.906 — 0.234 — 2.664 = -+ 0.008.

Therefore 6 lies between 83°and 83° 15’, and is probably about
83° 8. Hence the depth of flotation is & = 12(1 — 0.120) =
10.6 inches.

Prob. 24. Show that the depth of flotation for a sphere
whose radius is 7 is the real root of the cubic equation

88— 3r 44" % = 0.

Prob. 25. A rectangular wooden box 4.5 feet long, 3 feet
wide, and 2.5 feet deep, inside dimensions, is made of timber
1} inches thick, which weighs 3 pounds per foot board mea:ure.
How much water will it draw when a weight of 200 pounds is
placed in it and the cover nailed on? Ans. 0.46 feet.

ARTICLE 18. STABILITY OF FLOTATION.

The equilibrium of a floating body is stable when it returns
to its primitive position after having been slightly moved there-
from by extraneous forces, it is indifferent when it floats in any
position, and it is unstable when the slightest force causes it to
leave its position of flotation. For instance, a short cylinder
with its axis vertical floats in stable equilibrium, but a long
cylinder in this position is unstable, and a slight force causes it
to fall over and float with its axis horizontal in indifferent
equilibrium.
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The stability depends in any case upon the relative posi-
tion of the centre of gravity of the body and its centre of
" buoyancy, the latter being the centre of gravity of the dis-
placed water. Thus in Fig. 11 let G be the centre of gravity
of the body and C that of the
centre of buoyancy when in an
upright position. Now if an ex-
traneous force causes the body
to tip into the position shown,
the centre of gravity remains
at G, but the centre of buoy-
ancy moves to D. In this new

Fic. 11. position of the body it is acted
upon by the forces W’ and W, whose lines of direction pass
through G and D. W’ is the weight of the body and I# the
weight of the displaced water; and as these are equal, they
form a couple which tends either to restore the body to the
upright position or to cause it to deviate farther from that
position. Let the vertical through D be produced to meet the
centre line CG in M. If Misabove G the equilibrium is stable,
as the forces Wand W’ tend to restore it to its primitive posi-
tion ; if M coincides with G the equilibrium is indifferent; and
if M be below G the equilibrium is unstable.

The point M is often called the ‘metacentre,’” and the
theorem may be stated that the equilibrium is stable, indifferent,
or unstable according as the metacentre is above, coincident
with, or below the centre of gravity of the body. The measure
of the stability of a floating body is the moment of the couple
formed by the forces Wand W’. But the line GM is propor-
tional to the lever arm of the couple, and hence the quantity
W X GM may be taken as a measure of the stability. The
stability, therefore, increases with the weight of the body, and
with the distance of the metacentre above the centre of gravity.
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To ensure a high degree of stability the centre of gravity should
be as low as possible.

The only important applications of these principles are in
connection with the subject of naval architecture, and in general
the resulting investigations are of a complex character, which
can only be solved by approximate tentative methods. REED's
Treatise on the Stability of Ships (London, 1885) is a large
volume entirely devoted to this topic.

Prob. 26. If 6 be the angle of inclination to the vertical, ¢
the distance between the metacentre. and centre of gravity,
show that the stability of flotation can be measured by the
quantity We sin 6. ‘
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CHAPTER III
THEORETICAL HYDRAULICS.

ARTICLE 19. VELOCITY AND DISCHARGE.

If a vessel or pipe be constantly full of water, all the parti-
cles of which move with the same uniform velocity », and if
be the area of its cross-section, the quantity of water which
passes any section per second is equal to the volume of a prism
whose base is @ and whose length is , or

g=av. . . . . . . . . (6

If, now, the vessel varies in cross-section, one area being a,
another 2,,and a third 4,, the same quantity of water passes
each section per second if the vessel be kept constantly full ;
hence if 7, v,, and v, be the respective velocities,

q = av=au, = ayu,.
The velocities of flow in different sections of a pipe or vessel
which is maintained constantly full hence vary inversely as

the areas of the cross-sections.

In case the particles or filaments move with different veloci-
ties in different parts of the section, the quantity may be still
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expressed by ¢ = av, provided that v signifies the mean velocity
of the flow; or

QR

R

may be regarded as a definition of the term mean velocity.

v=

The word discharge will be used to denote the quantity of
water flowing per second from a pipe or orifice, and the letter
Q will designate the theoretic discharge, that is, the discharge
as computed by the methods of this chapter, where resistances
or losses due to friction, contraction, and other causes are not
considered. The letter IV will designate the theoretic velocity,
so that if @ be the area of an orifice, or the cross-section of a jet,

Q=alV
is the formula for the theoretic discharge. In the case of flow
from a simple orifice the area ¢ is found by the measurement

of its dimensions, so that the problem of finding @ is reduced
to that of determining V.

Prob. 27. A pipe constantly filled with water discharges
©0.43 cubic feet per second. Compute the mean velocity of flow
if the pipe is 3 inches in diameter; also if it is 6 inches in
diameter.

\

ARTICLE 20. VELOCITY OF FLOW FROM ORIFICES.

If an orifice be opened, either in the base orside of a vessel
containing water, it flows out with a velocity which is greater
for high heads of water than for low heads. The theoretic
velocity of flow is given by the theorem discovered by TORRI-
-CELLL¥*

The theoretic velocity of flow at the orifice is the same as
that acquired by a body falling freely in a vacuum

through a height equal to the head of water on the
orifice.

* Del moto dei gravi (Firenz, 1644).
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The proof of this rests partly on observation. Thus if a vessel be
arranged, as in Fig. 12, so that
a jet of water from an orifice is
directed vertically upward, it is
known that it never attains to
the height of the level of the
water in the vessel, although
under favorable conditions it

Fic. 1a. nearly reaches that level. It
may hence be inferred that the jet would actually rise to that
height were it not for the resistance of the air and the friction
of the edges of the orifice. Now, since the velocity of impulse
required to raise a body vertically to a certain height is the
same as that acquired by it in falling from rest through that
height, it is regarded as established that the velocity at the
orifice is as stated in the theorem.

The following proof rests on the law of conservation of
energy. Let, as in the second diagram of Fig. 12, the water
surface in a vessel be at 4 at the beginning of a second and at
A, at the end of the second. Let W be the weight of water
between the planes 4 and 4,, which is evidently the same as
that which flows from the orifice during the second. Let W be
the weight of water between the planes A4, and B, and /%, the
height of its centre of gravity above the orifice. Let / be the
height of A4 above the orifice, and 6% the distance between 4
and A,. Then at the beginning of the second the water in the
vessel has the energy W&, + W(k — 36/). .If V be the velocity
of flow through the orifice, the same water at the end of the

second has the energy Wk, + WZKg By the law of conserva-

tion these are equal, if no energy has been dissipated in friction
or in other ways; thus,
V’
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Now if 6% be small compared with %, which will be the case
when 4 is large compared with the area of the orifice, this gives

V= v2g%,

which is the same as for a body falling freely through
the height % (Art. 6).

The theoretic velocity of flow from any orifice, whether its
plane be horizontal, vertical, or inclined, is thus given by

V:@}z,........(ﬂ

provided the orifice be small compaired with the section of the
reservoir. The theoretic height to which the jet will rise is

_r
=%

N ¢4

The first of these formulas states the velocity due to a given
head, and the second states the head which would generate a
given velocity. The term “velocity head ” will be generally

. . .
used to designate the expression Era meaning thereby that its

value is the head which can produce the velocity V.

Using for g the mean value 32.16 feet per second per
second, these formulas become

V=2802¥k k=o001555)",

from which the following tables have been computed. These
are mainly intended to impress upon the student the fact that
small heads produce rapid velocities, but they may also prove
serviceable for use in approximate computations. The last
columns of the tables give multiples of the numbers 8.02
and 0.01555.
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TABLE 1V. THEORETIC VELOCITIES.

. Velocity. Head. Velocity. Multiples of

Feaw | Feetper | e | SR B osse7.

0.001 0.254 | F S 8.02 1 8.02
.002 .358 2 11.33 2 16.04
003 439 3 13.89 3 24.06
004 .507 l 4 16.04 4 32.08
005 .567 1 5 17.93 5 40.10
.006 .Q21 6 19.64 6 48.12
.007 .671 ‘ 7 21.22 7 56.14
o008 717 8 22.68 8 64.16
009 .761 l 9 24.06 9 72.18

TABLE V. VELOCITY HEADS.

Velocity. Head. Velocity. Head. Multiples of

'é:z:’g;' Feet. Fs'eez:’gsr Feet, 0.015547.
1 0.016 10 1.55 1 0.01555 I
2 .062 20 6.22 2 .0310y
3 . 140 30 13.99 3 .046064
4 .249 40 24.88 4 .06219
5 -389 50 38.86 5 07774
6 .560 60 55.97 6 .09328
7 .762 70 76.19 7 .10883
8 .995 80 99.5I 8 .12438
9 1.260 90 125.95 9 .13992

Prob. 28. Find the theoretic velocity of flow from an orifice
under a head of 6 inches. Find the velocity-head of a stream
o.1 feet in diameter which discharges 2.5 cubic feet per minute-

Ans. V= 5.67 feet per second, / = 0.44 feet.

ARTICLE 21. HORIZONTAL ORIFICES.

Let a be the area of an orifice whose plane is horizontal, £
the head of water upon it, and Q the quantity of water dis-
charged per second. The theoretic discharge is, from the prin-
ciples of the preceding articles,

Q:ai/gl;, L ) (8)
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provided that the area of the orifice be small compared with
the cross-section of the vessel. If « is in square feet and /4 in
feet, Q will be expressed in cubic feet per second. It will be
seen in the next chapter that various circumstances materially
modify in practice the results as obtained from this formula.

) The discharge from a horizontal orifice is, like the velocity,
proportional to the square root of the l.ead. Thus with the
same orifice to double the discharge requires the head to be
increased fourfold. The head which will produce a given dis-
charge is

s s

~ 2ga"’

whence the head varies inversely as the square of the area of
the orifice.

Horizontal orifices are but little used, as in practice it is
found more convenient to arrange an opening in the side of a
vessel than in the base. The above formula applies approxi-
mately to a vertical orifice if 2 be taken as the head on its
centre of gravity.

The discharge is theoretically independent of the shape of
the orifice, so that orifices of different forms with equal areas
give the same value of Q. For a circle whose diameter is &,

Q = ind" ¥2gh.
For a rectangle whose sides are 4 and 4,
Q=0bd ygh;

and similarly for other forms z is to be inserted in terms of the
linear dimensions, which must be numerically expressed in the
same unit as g.

Prob. 29 Compute the theoretic discharge from an orifice
one inch in diameter under a head of 1.5 feet.
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ARTICLE 22. RECTANGULAR VERTICAL ORIFICES.

If the size of an orifice in the side of a vessel be small com-
pared with the head, then the mean theoretic velocity of the
outflowing water may be taken as 42g/%, where % is the head on
the centre of the orifice, and consequently the theoretic dis-
charge is aV ora ¥'2gk. Strictly, however, the head, and hence
the velocity, is different in dif-

Il — ferent parts of an orifice whose
——| { F === +—] plane is vertical.
~~—bH—> . .

! A rectangular orifice with
two edges parallel to the water
surface is the most important

> .
case. Let & be its breadth, 4,

the head of water on its upper
edge, and /%, the head on its
lower edge, so that 2, — 4, is its depth. Let any elementary
strip whose area is 4. dy be drawn at a depth y below the water
level. The velocity of flow through this elementary strip is, as
shown in Art. 20, ‘ :

F1a. 13.

V=12,
and the discharge per second through it is
8Q = b6y ¥2gy.

The total discharge through the orifice is obtained by integrat-
ing this expression between the limits %, and Z4,, which gives

Q=842g(d—=1Y.. . . . . . (9

In case the top edge of the orifice is at or above the level of
the water, £, = o, and then if the head /%, be denoted by H#,
the discharfge is

Q= V20 Hi = YoH V2gH = §aV2gH, . . (9)

which is the basis of all formulas for weir measurement.
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To ascertain the error caused by using the formula (8) in-
stead of (g) for a rectangular lateral orifice, let £ be the head on
its centre of gravity, ard 4 be its vertical depth, 4, — %,. Then
from (8)

Q = bd ¥V2gh.

Now in (g) let £, = %2+ 4d, and 4, = % — }d; then developing
by the binomial formula,
3d 3d' 14 3 ' 3 a*
1= e S Bt T g o s ;
< h’(l+4lz+3zl¢’ 1281;‘+2o481¢‘ 81924 +etc.),
3d  3d* 1 4 3 4 3 4°
§ = B e e BT T i :
%, Id(l 4/z+32/z’+128/z’ +2048/z‘+81921z‘ +etc.),

and (9) becomes
. 1 d* 1 d' 1 4
Q= bd ¥ Zg/t(l - 9._67; - ;O-:;S—/l—‘ - 2—1845 y CtC.).
Therefore the discharge obtained by using (8) is always too
great. The true theoretic discharge, from the formula just

deduced, is:

If A= d, Q = 0.989 od ¥ 2gh;
If h=2d, Q = 0.997 6d V2gk;
If 2=3d, Q = 0.999 bd V2.

The error of the formula Q = &d ¥'2g/ is thus seen to be 1.1
per cent when % = d, only 0.3 per cent when 4 = 24, and only
about o.1 per cent when £ = 3d. Accordingly, if the head on
the centre of the orifice is greater than two or three times the
vertical depth of the orifice, the approximate formula (8) is
generally used instead of the exact formula (g), since the slight
error thus introduced is of no practical importance.

Prob. 30. Compute the theoretic discharge from a rectan-
gular orifice 0.5 feet wide and 0.25 feet high when the head on
the top of the orifice is 0.375 feet.

Ans. Q = 0.707 cubic feet per second.
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ARTICLE 23. TRIANGULAR VERTICAL QORIFICES.

Triangular vertical orifices arc sometimes used for the
measurement of water, the arrangement being as shown in
Fig. 14. Let 4 be the width of
the orifice at the water level,
and /A the head of water on
the vertex. Let an elementary
strip whose depth is dy be

Fic. 14. drawn at a distance y below the
water level. From similar triangles the length of this strip is

A -

/)
V-2 (H— y), and the elementary discharge then is

80 = (H — 50y Vagy = 1 V35 (Hyh — ey,

The integration of this between the limits o and A gives
Q= NbV2g HY = AbH V25 H.

If the sides of the triangle are equally inclined to the vertical, -

as should be the case in practice, and if this angle be a, & may

be expressed in terms of « and /, so that the equation be-
comes

Q= {tana. H*V2gH = ftana . ¥2g. HL.

The discharge is thus equal to a constant multiplied by the
24 power of the measured depth.

If the orifice be a trapezoid whose upper base is &, lower
base #’, and altitude &, the discharge is found by integrating
the above differential expression between the limits o and 4,
and then substituting for A its value in terms of 4, 4, and &,

namely, A = Z—i—b——b, The theoretic discharge then is

0 = yoa v2gd[ + 2 %)




Arr. 24.) CIRCULAR VERTICAL ORIFICES. 45

If in this & equals & it becomes the same as the formula for a
rectangular orifice, while if & equals 0 it gives the same result
as found above for the triangle.

Prob. 31. Prove that the theoretic discharge from a lateral
triangular orifice whose base is horizontal and whose vertex is
in the water level is Q = $6d ¥'2gd, where 4 is the base and dis
the altitude.

.

ARTICLE 24. CIRCULAR VERTICAL ORIFICES.

To determine the theoretic discharge through a circular
orifice whose plane is vertical, let Z be the head on its centre,
and r its radius. Let an elementary
strip be drawn at a distance y above ==
the centre; the length of this is
27 — 3, its area is 20y V7 — 5, T~
and the head upon itis #—y. Then -——{———-u-d-}- -
the theoretic discharge through this
strip is

60 = 20y V7' — y* ¥V 2,5(h — y). Fic. 1.

To integrate this expand (4 — »)t by the binomial formula.
Then it may be written

60=2 Vzgh| -y -T2 CIW _CAW 1T,

84 16/

Each term of this expression is now integrable, and taking the
limits of y as 4 7 and — 7 the entire circle is covered, and

0= vVagi(1 — 5 o — e — et )y (10

which gives the theoretic discharge per second for any values
of r and 4.
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The approximate formula (8) applied to this case gives for
the discharge n7* ¥2g/, which is always greater than the true
discharge ; thus from (10),

If 2=2r, Q= 0.992xr¥2gk;
If 2=3r, Q= 0996 nr V2gh;
If 2=4r, Q = 0.998 nr* ¥2gh.

Hence the error in the use of (8) is only 0.4 per cent when
% = 37r; and only 0.2 per cent when 2 = 4». In general the
approximate formula may be used whenever the head on the
centre of the circle is greater than four or five times its radius.

Prob. 32. Compute the theoretic discharge from a circle of
one inch diameter when the head on its centre is 0.5 feet.

ARTICLE 25. INFLUENCE OF VELOCITY OF APPROACH.

Thus far, in the determination of the theoretic velocity and
discharge from an orifice, the head has been regarded as con-
stant. But the head can only be maintained constant by an
inflow of water, and this modifies the theoretic velocity. Let
2 be the area of the orifice, and A that of the horizontal cross-
section of the reservoir; let I” be the theoretic velocity of flow
through 2, and v the vertical velocity of inflow through the

section A. The energy of W pounds of water as it flows from

the orificeis W -21—:;, and this is equal to the energy Wi stored
up in the fall plus the energy W%of the inflowing water, or

/’
w” —wngw?,
28 28

Now the quantity of water which flows through the section a




ART. 25.] J/NFLUENCE OF VELOCITY OF APPROACH. 47

in a unit of time is the same as that passing through the area
A in the same time, or (Art. 19)

aV = Av, whence v=§V.

Inserting this value of v in the equation of energy, and solving
for V, gives the result
. 2gh
V= —
\/I—(;;)’ e e+ o e o a (Il)

which is always greater ‘than the value ¥2g%.

The influence of a constantly maintained head on the ve-
locity of flow at the orifice can now be ascertained by assign-
a

ing values to the ratio L thus:
If a= A, V= o;
If a= 34, V= 1.342Y2g%;
If a= 44, V=1154%2g%;
If a= 34, V= 1061¥2g%;
If a= 34, V=1021 Vagh;
If a=/A4, V= 1.005V2g%

It is here indicated that the common formula (8)is in error
2.1 per cent when @ = }4, if the head be maintained constant
by a uniform vertical inflow at the water surface, and 0.5 per
cent when @ = ;4. Practically, if the area of the orifice be
less than one-twentieth of the cross-section of the vessel, the’
error in using the formula V' = #2g/% is too small to be noticed
even in the most precise cxperiments, and fortunately most
orifices are smaller in relative size than this.

A more common case is that where the reservoir is of large
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horizontal and small vertical crosssection, and where the water
approaches the orifice with a
horizontal velocity, as in a
— canal or trough. Here let 4
‘ be the area of the vertical
\ \\\ cross-section of the vessel, @
~ the area of the orifice, and 4
Fic. 6. the head upon its centre.
Then if 2 be large compared with the depth of the orifice,
exactly the same reasoning applies as before, and the theoretic
velocity of flow is

-2gh

1 — (‘—l— .

4
If, however, 4 be small, let #, and %, be the heads on the upper
and lower edges of the orifice, which is taken as rectangular.

Then, using the same reasoning as above, the velocity of flow
at any depth y is given by

V'= 209+,

where v is the constant velocity of approach through the area
A. The discharge through a strip of the length 4 and depth
6y (Art. 20) then is

V=

60 = bdy(2¢y + V),

and, by integration between the limits %, and #%,, the theoretic
discharge per second from the orifice is

Q=16V5é[(h,+%)'—(h,+%)']. . . (1)

In this case, particularly when %, = o, the velocity of approach
may exercise a marked influence on the discharge.



ART. 26.] FLOW UNDER PRESSURE. - 49

Prob. 33. In the case of horizontal approach, as seen in
Fig. 16, let b =4 feet, £, = 0.8 feet, 2, = 0, and v = 2.5 feet
per second. Compute the theoretic discharge: first, neglecting
v; and second, regarding v.

ARTICLE 26. FLOW UNDER PRESSURE.

The level of water in the reservoir and the orifice of out-
flow have been thus far regarded as subjected to no pressure,
or at least only to the pressure of the atmosphere which acts
upon both with the same mean force of 14.7 pounds per square
inch (since the head 4 is rarely or never so great that a
sensible variation in atmospheric pressure can be detected
between the orifice and the water level). But the upper level
of the water may be subject to the pressure of steam or to the
pressure due to a heavy weight or to a piston. The orifice
may also be under a pressure greater or less than that of the
atmosphere. It is required to determine the velocity of flow
from the orifice under these conditions.

First, suppose that the surface of the water in the vessel or
reservoir is subjected to the uniform pressure of p, pounds per
square foot above the atmospheric pressure, while the pressure
at the orifice is the same as that of the atmosphere. Let % be
the depth of water on the orifice. The velocity of flow Vis
greater than #2g% on account of the pressure 2., and it is
evidently the same as that from a column of water whose
height is such as to produce the same pressure at the orifice,
The total unit-pressure at the depth of the orifice is

2 =wh+p,

and from (1) the head of water which would produce this pres-
sure is

?_,.
Z=ntl
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Accordingly the velocity of flow from the orifice is

= I2)

v="~2(k+2),

or, if /4, denote the head corresponding to the pressure p,,
V=4+¥2g(k+ 4,)

The general formula (6) thus applies to any small orifice, if £
be the head corresponding to the static pressure at the orifice.

Secondly, supppse that the surface of the water in the
vessel is subjected to the unit-pressure p,, while the orifice is
under the external unit-pressure p,. Let % be the head of
actual water on the orifice, 4, the head of water which will
produce the pressure p,, and %, the head which will produce p,.
The velocity of flow at the orifice is then the same as if the
orifice were under a head 2+ 4, — 4,, or

V=V Ty, . . . . . (12)

in which the values of %, and 4, are

ky, = zf , k===
w w
Usually p, and p, are given in pounds per square inch, while %,

and 4, are required in feet; then (Art. 9)

k, = 2.304 p,, h,= 2.304 p,.

The values of p, and p, may be absolute pressures, or merely
pressures above the atmosphere. In the latter case p, may
sometimes be negative, as in the discharge of water into a

condenser.
As an illustration of these principles let a cylindrical reser-
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voir, Fig. 17, be 2 feet in diameter; and upon the surface of the
water let there be a tightly fitting
piston which with the load W
weighs 3000 pounds.- At the
depth 8 feet below the water
level are three small orifices: one
at 4, upon which there is an ex-
terior head of water of 3 feet; one .
not’ shown in the figure, which 1
discharges directly into the at- Fia. 1.
mosphere ; and one at C, where the discharge is into a vessel in
which the tension of the air is'only 10 pounds per square inch.
It is required to determine the velocity of efflux from each
orifice. ~The head 7%, corresponding to the pressure: on. the
upper water surface is -

e
T
|

,*_
]
I
:l
1

1%
|
|
|
|

!‘0

Py I 3000
° w 31416)(625

= 15.28 feet.

The head 4, is 3 feet for the first onﬁce, o for the second and
— 2.304(14.7 — 10) = — 10.83 feet for the third. The three
theoretic velocities of outflow then are:

V=2802¥8+1528— 3 = 36.1 feet per second;
V=280248+4+1528 — o = 38.7 feet per second;
V = 8.02 ¥8 4 15.28 + 10.83 = 46.8 feet per second.

In the case of discharge from an orifice under water, as at
A in Fig. 17, the value of 2 — %, is the same wherever the
orifice be placed below the lower level, and ‘hence the velocity
depends upon the difference of level of the two water surfaces,
and not upon-the depth of the orifice.

The veloéity of ﬂow of oil or mercury under pressure is to
be determined in. the same manner as water, by finding the
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heads which will produce the given pressure. Thus in the pre-
ceding numerical example, if the liquid be mercury, whose
weight per cubic foot is 850 pounds, the head of mercury cor-
responding to the pressure of the piston is

= 390 __
h, = 31416 X 850 — 1.12 feet,
and, accordingly, for discharge into the atmosphere at the
depth %2 = 8 feet the velocity is

V = 8.02 ¥8 4 1.12 = 24.2 feet per second,

while for water the velocity was 38.7 feet per second. The
general formula (6) is applicable to all cases of the flow of

:—Z—be substituted,.
where p is the resultant unit-pressure at the depth of the orifice,
and w is the weight of a cubic unit of the liquid.

liquids from a small orifice, if for 4 its value

Prob. 34. Water under a head of 230 feet flows into a boiler
whose gauge reads 45 pounds per square inch. Find the ve-
locity of the inflowing water.

. Prob. 35. The pressure in a boiler is 60 pounds per square
inch above the atmosphere. Compute the theoretic velocity
of flow from a small orifice one foot below the water level.

ARTICLE 27. PRESSURE-HEAD AND VELOCITY-HEAD.

When a vessel is filled with water at rest the pressure at
any point depends only upon the head of water above that
point (Art. 9). But when the water is in motion it is a fact of
observation that the pressure becomes less than that due to
the head. The actual pressure in any event may be measured
by the height of a column of water. Thus if the water be at
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rest in the case shown in Fig. 18, and small tubes be inserted
at A, B, and C, the water will : '
rise in each tube to the same

height as that of the water =
level in the reservoir, and the - —
pressures at 4, B, and Cwill = =7
be those due to theheads A2z, — - = -A
Bb,and Ce. But if an orifice
be opened, as seen near C, the
water levels in the tubes sink to the points a,, 4,, and ¢,; that
is, the pressures at 4, B, and C are reduced to those due to

the heads de,, B4, and (¢,.

Let £ be the head of water on any point, or the depth of
that point below the free water level. Let 4 be the head
due to the actual pressure of the water at that point, or the

pressure-head. Let % be the head due to the actual velocity
of the water at that point, or the velacity-head. Then

" .
k‘+52—=h;. P € &)

or, in the form of a theorem :

The pressure-head plus the velocity-head is equal to the
total hydrostatic head.

In order to prove this let ¥ be the weight of water which
_ passes the section per second; then W-;% is the energy which
it possesses. The total theoretic energy of this water is Wk,
and if there be no losses of energy the remaining energy is
w (lz - %) , which is to be equated t‘.’ Wr, , which vepresents
the potential enevgy still existing in the form of pressure.
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‘Hence = 'lz_—'”:-_—h;, '

. 2g :
whence the theorem follows as stated. In Fig. 18 aa, is the
velocity-head for the section 4, while Aa, is. the pressure-head.

Another method of proof is to consider the section at A4 as
an orifice through which the flow occurs under a head %4 — £#,,
where %, is thé hedd caused by the back pressure p,. Then,
from the last article,

from which % = % — %,, which also agrees with the theorem.

The pressure-head Aa, at 4 hence decreases when the ve-
locity of the water at A increases, and the same is true for any
other section as B. Let v and ¢’ be the velocities at 4 and B:
then, since the same quantity of water passes each section per
second, the relation Av = B7’ must be fulfilled. Hence if B
be greater than A the velocity v is greater than ¢/, and the
pressure-head at B will be greater thanat 4. To illustrate: let
the depths of 4 and B be 6 and 5 feet respectively below the
water level, and the corresponding cross-sections be 1.2 and 2.4
square feet. Let the quantity of water discharged by’ the
orifice near C be 14.4 cubic feet per second. Then the velocity
at 4is ‘

14.4

v=S—=12 feet per.second,

which corresponds to a velocity-head of
I
Py = 0.015552" = 2.24 feet ;

and accordingly the pressure-head Ae, is

k, = 6.0 — 2.24 = 3.76 feet.
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Proceeding in the sime way for B, the velocity is found to be
6 feet per second, the velocity-head 0.56 feet, and finally the
pressure-head is 5.0 — 0.56 = 4.44 feet. The hydrostatic head
at A is thus diminished by the velocity-head 2a, = 2.24 feet,
while at B it is diminished by the smaller amount 45, = 0.56
feet. When the water was at rest the pressures were :

At 4, p = 0.434 X 6 = 2.60 pounds per square inch;
At B, p = 0.434 X 5 = 2.17 pounds per square inch.

But as soon as the flow from the orifice began the pressures
became:
At A, p = 0.434 X 3.76 = 1.63 pounds per square inch;
At B, p = 0.434 X 4.44 = 1.93 pounds per square inch.

A negative pressure may occur if the velocity-head becomes

: 7
greater than the hydrostatic head; for since 4, 4 % equals 4,

7
the value of %, is negative when gexceeds k. A case in
which this may occur is shown in Fig. 19, where the section at
vl
A is so small that 7 becomes

larger than 4, so that if a tube be
inserted no water runs out, but if
the tube be carried downward into
a vessel of water there will be
lifted a column CD whose height
is that of the negative pressure-
head %,. For example, let the
cross-section of 4 be 0.4 square _
feet, and its head % be 4.1 feet, while 8 cubic feet per second
are discharged from the orifice below. Then the velocity at 4
is 20 feet per second, and the corresponding velocity-head is

MG. 19.
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6.22 feet. The pressure-head at A4 then is, from (13),

h, = 4.1 — 6.22 = — 2.12 feet,
and accordingly there exists at 4 an inward, or negative
pressure,

2, = — 2.12 X 0434 = — 0.92 pounds per square inch.

This negative pressure will sustain a column of water TD
whose height is 2.12 feet. If the small vessel be placed so that
its water level is less than 2.12 feet below, water will be con-
stantly drawn from the smaller to the larger vessel. This is
the principle of the action of -the injector-pump.

Prob. 36. The hydrostatic pressure in a pipe is 80 pounds
per square inch. What velocity must the water have to reduce
this to 50 pounds per square inch?

ARTICLE 28. TIME OF EMPTYING A VESSEL.

Let the depth of water in a vessel be /; it is required to
determine the time of emptying it through a small orifice in
the base whose area is @. Let ¥ be the area
of the water surface when the dcpth' of water
is y; let 8¢ be the time during which the water
level falls the distance dy. During this time
the quantity of water ¥Ydy passes through the

Fi6. %o, orifice. But the discharge in one second under
the constant head y is a ¥2¢y, and hence the discharge in the

time &7 is 207 ¥2gy. [Equating these two expressions, there is
found the relation

The time of emptying the vessel is now found by inserting for
V its value in terms of y, and then integrating between the
limits A and o.
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For a cylinder or prism the cross-section ¥ has the constant
value 4, and the formula becomes

. )
dtz_A;_y__._J‘!_,
a¥2g

the integration of which gives

_2AyH _ 24H

T aVag  a¥V2gH

as the theoretic time of emptying the vessel. If the head were
maintained constant the uniform discharge per second would
be a ¥2gH, and the time of discharging a quantity equal to

the capacity of the vessel is 44 divided by a ¥2¢/, which is
one half of the time required to empty it.

t

To find the time of emptying a hemispherical bowl of
radius 7, let = be the radius of the cross-section ¥; then

2+ (r—p) =7

2 =27y — 3"
Y = n(2ry — ).
‘The equation for 67 then becomes
nw
8t = —1— (arsh — N)ay,
avVg

and by integration between the limits » and o

147!

‘t = —
15a2 ¥2¢

which is the theoretic time required to empty the hemisphere.

The only important application of these principles is in the
case of the right prism or cylinder, and the formula for this
is materially modified in practice, as will be seen in the next
chapter. It is more frequently required to determine the
time during which the water level will descend from the
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height A to another height £ This is found by integrating
between the limits /& and % ; thus, for the prismatic vessel,

A
t=aj/§(4/17— VE), . . . . . (14)

which gives the theoretic time of descent in seconds.

Prob. 37. A sphere is filled with water. Find the time of
emptying it through a small orifice at its lowest point.

Prob. 38. A conical vessel whose altitude is A, and whose
base has the radius #, is placed with its axis vertical, and
emptied through a small orifice in its base. Prove that the

1677° VH

theoretic time is —————-
152 ¥2g

ARTICLE 29. FLOW FROM A REVOLVING VESSEL.

The water in a vessel at rest is acted upon only by the
force of gravity, and hence its surface is a horizontal plane; but
the water in a revolving vessel is acted upon by a centrifugal
force as well as by gravity, so that its surface assumes a curved
shape. The simplest case is that of a vessel revolving with
uniform velocity about a vertical axis, and it will be shown
that here the water surface forms a paraboloid whose axis
coincides with that about which it revolves. Fig. 21 repre-
sents such a case, VT being the vertical axis.

Let M be any point on the surface whose co-ordinates OV
and NM are y and x. Let I be the
weight of a particle at /M, whose intensity
is represented by MG; this particle in
consequence of its velocity of revolution

C
>y

|
NR u is acted upon also by a centrifugal force
2

MC whose value* is !;'—, —Z— The resultant

# See Woob's Elementary Mechanics, p. 226.
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MR of the weight and centrifugal' force must be normal to the
tangent MS at M, as the condition of equilibrium. The angle
NMS is hence equal to RMG, and accordingly -
; MC W
| tan VMS = T

But the tangent of this angle is the first derivative of y with
reference to x. Further, the value of % varies directly with
z, so that # = wx if @ be the angular velocity, that is, the
velocity at the distance unity from the axis. Accordingly,

is the differential equation of the curve, and by integration
« _ G”x‘
. T
which is the equation of a common parabola. Therefore the
surface is a paraboloid. Since wx is the velocity # at the point
M, this equation may be written

= 52 '
which shows that the ordinate y is the head due to the velocity
of revolution.

If % be the head OT at the axis, the velocity of efflux

from a small orifice at T"is 4#2g4. But for an orifice at U the
velocity is due to the head MU, and

MU =0T+ NO="r+y.
The theoretic velocity of flow from U therefore is
V=+Voglht+y)=¥V2gk+au,. . . . (15)

where % is the velocity of revolution of the point U or A
This formula is a very important one in the discussion of cer-
tain hydraulic motors.
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To determine the velocity # of a point at the distance x
from the axis of revolution it is only necessary to count the
number of revolutions made per second. If # be this number,

u=2mrx.n;

or, in another form, since 277 is the velocity at the-distance
unity from the axis,

w=2an and u= w=z.

As an example of the application of these principles, let
there be a cylindrical vessel which is 2 feet in diameter and
3 feet deep, and which is one half full of water. It is required
to find the number of revolutions per second about its axis
which will cause the water to begin to overflow around the
upper edge. The volume of a paraboloid being one-half of
its circun'\scribing cylinder, the vertex of the paraboloid at the
moment of overflow will coincide with the centre of the base
of the vessel, and hence the value of y for the upper edge is
3 feet. Accordingly,

_ _ wi. Il
y=3= 2 ’
whence @ = 13.89, and then
_ 138 _
n=—" " =221

which is the number of revolutions per second. If the vessel
were three-fourths full of water, the volume of the paraboloid
at the moment of overflow would be onefourth that of the
cylinder, and the value of y for the upper edge would be one-
half the altitude of the cylinder, or 1.5 feet. Hence w is found
to be 9.82, whence the number of revolutions per second is
about 1.56.

Prob. 39. A cylindrical vessel is 3 feet in diameter. How
many revolutions per minute must be made about its vertical
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axis in order that the velocity of the outer surface may be 50
feet per second?

Prob. 40. A cylindrical vessel 2 feet in diameter and 3 feet
deep is three-fourths full of water, and is revolved about its
vertical axis so that the water is just on the point of overflow-
ing around the upper edge. Find the theoretic velocity of
efflux from an orifice in the base at a distance of g inches from
the axis Ans. 12.28 feet per second.

ARTICLE 30. THE PATH OF A JET.

When a jet of water issues from a small orifice in the ver-
tical side of a vessel or reservoir, its di-
rection at first is horizontal, but the

force of gravity immediately causes the -n =
jet to move in a curve which will be i__“i gl o
shown to be the common parabola. ”: R i

Let x be the abscissa and y the ordi-
nate of any point of the curve, meas-
ured from the orifice as an origin, as Fro. s,
seen in Fig 22. The effect of the im-
pulse at the orifice is to cause the space x to be described
uniformly in a certain time 4, or, if » be the velocity of f-"low,
z =vt. The effect of the force of gravity is to cause the
space y to be described in accordance with the laws of falling
bodies (Art. 6), or y = §¢#". Eliminating ¢ from these two

equations gives
q g N gt 2
I=20 " &
which is the equation of a parabola whose axis is vertical and
whose vertex is at the otrifice.

The horizontal range of the jet for any given ordinate
is found from the equation 2* = 44y. If the height of the
vessel be /, the horizontal range on the plane of the base is

x =2 Vk{l — &)
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This value is 0 when- %4 =0 and also when %= /.and it-isa
maximum when # = 4/ Hence the greatest range is from an
orifice at the mid-height of the vessel.

A more general case is that where the side of the vessel is
inclined to the vertical at the
angle 6, as in Fig. 23. Here the
jet at first issues perpendicularly
to the side, and under the action
of the impulsive force a particle
of water would describe the dis-
tance AB in a certain time £
But in that same time the force
of gravity causes it to descend through the distance . Now
let » be the horizontal abscissa and y the vertical ordinate of
the point C measured from the origin 4. Then AB = z sec ¥,
and BC = rtan ¥ — y. Hence '

. 23.

xrsecl =, rtan § —y = §gf.
The elimination of £ from these expressions gives, after replac-
ing 7" by its value 2¢%,

2 sec’ 0

4%

y=xtanf — T ¢ {9)]

which is also the equation of a common parabola.

To find the horizontal range in the level of the orifice make
y=o0; then

tan ¢
= — = in 26.
xr =4k sec' 0 2/ sin 2
This is 0 when § =0° or § = go°; it is a maximum and equal to

2/: when 0 = 45°. To find the highest point of the. jet the
first derivative of y with reference to x is to be equated to zero
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in order to locate the point where the tangent to the curve is
horizontal ; thus, 4
o xsec' b

oy _
E;—tan(i——az—-—o,

from which » = 2% sin 6 cos 6, and this, inserted in the equation
of the curve, gives

y=hsin'h,

which is'the highest elevation of the jet above the orifice. In
this, if § =90°, y = /; that s, if a jet be directed vertically up-
ward it will, theoretically, rise to the height of the level of
water in the reservoir.

As a numerical example let a vessel whose height is 16 feet
stand upon a horizontal plane DE, Fig. 23, the side of the
vessel being inclined to the vertical at the angle # = 30°. Let
a jet issue from a small orifice at 4, under a head of 10
feet. The jet rises to its maximum height, y = }10 = 2.5 feet,
at the distance x =443 X 10 = 8.66 feet from A. At » =
17.32 feet the jet crosses the horizontal plane through the
orifice. To find the point where it strikes the plane DE, the
value of yis made — 6 feet; then, from the equation of the
curve,

_ =z
-—621"/;—33,

from which x is found to be 24.62 feet; whence, finally,

DE = 24.62 — 6 tan 30° = 21.16 feet.

Prob. 41. Find all the circumstances of the motion of a jet
which issues from a vessel under a head of 5 feet, the side of
the vessel being inclined to the vertical at an angle of 60°, and.
its depth being g feet.
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ARTICLE 31. THE ENERGY OF A JET.

Let a jet or stream of water have the velocity v, and let W}’
be the weight of water per second passing any given cross-
section. The energy of this moving water, or the work which
. it is capable of doing, is the same as that stored up by a body
falling freely under the action of gravity through a height 4
and thereby acquiring the velocity . Thus, if X be the energy
or potential work,

K=WI:=W£- N 0 42
28

Therefore, for a constant quantity of water per second passing
through the given cross-section, the energy of the jet is pro-
portional to the square of its velocity.

The weight I, however, may be expressed in terms of the
cross-section of the jet and its velocity. Thus, if 2 be the area
of the cross-section, and w the weight of a cubic unit of water,
W is the weight of a column of water whose length is z and
whose cross-section is @, or W = wav; and hence (17) may be
written

K: wav . . . . . . . . (17)’
28

In general, then, it may be stated that for a constant cross-
section, the energy of a jet, or the work which it is capable of
doing per second, varies with the cube of its velocity.

The expressions just deduced give the theoretic energy of
the jet, that is, the maximum work which can be obtained from
it; but thisin practice can never be fully utilized. The amount
of work which is realized when a jet strikes a moving surface,
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like the vane of a water-motor, depends upon a number of cir-
cumstances which will be explained in a later chapter, and it
is the constant aim of inventors so to arrange the conditions
that the actual work may be as near to the theoretic energy as
possible. The “efficiency” of an apparatus for utilizing the
energy of moving water is the ratio of the work actually
utilized to the theoretic work; or, if £ be the work realized,
the efficiency ¢ is

k

3_2.........(18)
The greatest possible value of ¢ is unity, but this can never be
attained, owing to the imperfections of the apparatus and the
hurtful resistances. Values greater than o.go have, however,
been obtained; that is, go per cent or more of the theoretic
work has been utilized in some of the best forms of hydraulic
motors. '

For example, let water issue from a pipe 2 inches in diam-
eter with a velocity of 10 feet per second. The cross-section

6 .
in square feet is » and the theoretic work in foot-pounds

per-.second is

K =o0.01555 X 62.5 X 0.0218 X 10’ = 21.2,

which is 0.0385 horse-powers. If the velocity is 100 feet per
second, however, the theoretic horse-power of the stream will
be 38.5.

Prob. 42. One cubic foot of water per second flows from an
orifice with a velocity of 32 feet per second. Find the theo-
retic horse-power of the stream.

Prob. 43. A small turbine wheel using 102 cubic feet of
water per minute under a head of 40 feet is found to give 6.
horse-power. Find the efficiency of the wheel.

Ans. 8o per cent.
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ARTICLE 32. THE IMPULSE AND REACTION OF A JET.

When a stream or jet is in motion delivering W pounds of
water per second with the uniform velocity v, that motion may
be regarded as produced by a constant impulsive force F, which
has acted upon W for one second and then ceased. In this
second the velocity of / has increased from o to v, and the
space 4v has been described. Consequently the work F X 3v
has been imparted to the water by the impulse #. But the

theoretic energy of the jet is W;E; hence

FX4v= W-i}’ ’
28
from which the force of impulse F is
v
F=W= =+« « « ¢« « o« o« (19)
. r4

Let a be the area of the cross-section of the jet; then W = way,

and

F= R & (o)
wa 2 (19)

Therefore the impulse of a jet of constant cross-section varies
as the square of its velocity.

The force F is a continuous impulsive pressure acting in
the direction of the motion. For, by the definition, F acts for
one second upon the W pounds of water which pass a given
section ; but in the next second I# pounds also pass the section,
and the same is the case for each second following. This im-
pulse will be exerted as a pressure upon any surface placed in
the path of the jet.

The reaction of a jet upon a vessel occurs when water flows
from an orifice. This reaction must be equal in value and
opposite in direction to the impulse, as in all cases of stress
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action and reaction are equal. In the direction of the jet the
impulse produces motion, in the opposite direction it produces
a pressure which tends to move the vessel. The force of reac-

tion of a jet hence is

F= W1i=wa7£-
r'4 r'4

To compare this with hydrostatic pressure, let 2 be the ve-
locity-head due to v; then

F=2wa z’—= 2wak.
28

But, from Art. 10, the normal pressure on a surface of area 2
under the hydrostatic head % is wa/k. Therefore the dynamic
pressure caused by the reaction of a jet issuing from an orifice
in a vessel is douyble the hydrostatic pressure on the orifice
when closed. This theoretic conclusion has been verified by
experiment.

The full force of impulse or reaction is exerted in the line
of the action of the jet, and its force in any other direction is
the component of the force F in that direction. Hence in a
direction which makes an angle # with the line of motion of
the jet, the force which can be exerted by the impulse or reac-
tion is Fcos 6. Thus if water issues from an orifice in the base
of a vessel, it exerts an upward reaction / and a horizontal
reaction 0; if it issues in a direction inclined 30° to the vertical,
its upward reaction is / cos 30° and its horizontal reaction is
Fsin 30°.

If a stream moving with the velocity v, is retarded so that
its velocity becomes v,, its impulse in the first instance is

w g—_‘, and in the second W2, The difference of these, or

P=wi""
£



68 THEORETICAL HYDRAULICS.  [Cuap. 1IL

is a measure of the dynamic pressure developed. It is by
virtue of the pressure due to change of velocity that turbine
wheels and other hydraulic motors transform the energy of
moving water into useful work.

Prob. 44. Devise an experiment for measuring the force of
reaction of a jet which issues from an orifice in the base or side
of a vessel.

ARTICLE 33. ABSOLUTE AND RELATIVE VELOCITIES.

Absolute velocity is that with respect to the earth, and
relative velocity that with respect to a body in motion. For
instance, if water issues from a small orifice in a vessel which is
in motion in a straight line with the uniform velocity #, the
theoretic velocity of flow relative to the vessel is V' = ¥2g%,
or the same as its absolute velocity if the vessel were at rest,

v ____ v for no accelerating forces exist to
;_____u_ =t 7 change the direction or the valug
J_LTT "8 u of g&. The absolute velocity of

2 ZR:, flow, however, may be greater or
VXa——Ny

less than V, depending upon the
Fic. 4. value of # and its direction. To
illustrate: Fig. 24 shows a moving vessel from which water is
flowing - through three orifices. At A the direction of ¥V is
horizontal, and as the vessel is moving in the opposite direction
with the velocity #, the absolute velocity of the water as it
leaves the orifice is
v=V—u
It is plain that if the orifice were in the front of the vessel and
the direction of ¥ were horizontal, the absolute velocity would
bev=V+4u.

Again, at B is an orifice from which the water issues verti-
cally with respect to the vessel with the relative velocity ¥,

[
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while at the same time the orifice moves horizontally with the
velocity . Forming the parallelogram, the absolute velocity
v is seen to be the resultant of V" and %, or

v=VI"+ 4\

Lastly, at C is shown an orifice in the front of the vessel so
arranged that the direction of the relative velocity } makes an
angle ¢ with the horizontal. From C draw Cu to represent
the velocity #, and CV to represent V, and complete the par-
allelogram as shown; then Cv, the resultant of # and V, is the
absolute velocity with which the. water leaves the orifice.
From the triangle Cuv,

v =¥+ V*'+2uV cos ¢.

In this, if @ = o, v becomes % - V" as before shown ; if ¢ =go°,
it becomes the same as when the water issues vertically from
the orifice in the base; and if ¢ = 180° the value of v is that
before found for an orifice in the side of the vessel.

In Art. 29 the velocity of flow from an orifice in a vessel
revolving with uniform velocity was found to be

V =42+

This is the velocity relative to the vessel. If the orifice be in
the base, the direction of V" with respect to the vessel is ver-
tical, and as the orifice is moving horizontally with the uniform
velocity %, the absolute velocity of flow is

v=¥u'+ V' = ¥Vagh + 24

In the same way, if the orifice be in the side of the vessel, and
the direction of V" be horizontal and directly away from the
axis, the same formula applies, for the absolute velocity v is
the resultant of the two rectangular components V and .



70 THEORETICAL HYDRAULICS. [CHaPr. 1II.

If a vessel move with a motion which is accelerated or re-
tarded, this affects the value of g, and the reasoning of the pre-
ceding articles does not give the correct value of V. For
instance, if a vessel move vertically upward with an accelera-
tion £, the theoretic relative velocity of flow from an orifice in
it is

V=92g+ f)k:
and if » be its velocity at any instant, the absolute velocity
of flow is #+ V. This equation shows that if a vessel be
moving downward with the acceleration g, that is, freely
falling, V" will be zero, which of course is to be expected since
both water and vessel are alike accelerated.

Prob. 45. If V' be velocity of flow from the orifice at 4 in
Fig. 23, show that the velocity of the jet at the point £
is ¥V 4 2¢H4.

Prob. 46. If a vessel of water is moving horizontally with
an acceleration %g, show that the surface of the water isa
plane which is inclined to the horizontal at an angle of about
14 degrees.
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CHAPTER 1V.

FLOW OF WATER THROUGH ORIFICES.

ARTICLE 34. THE STANDARD ORIFICE.

" Orifices for the measurement of water are usually placed in
the vertical side of a vessel or reservoir, but may also be placed
in the base. In the former case it is understood that the
upper edge of the opening is completely covered with water;
and generally the head of water on an orifice is at least three
or four times its vertical height. The term standard orifice
is here used to signify that the opening is so arranged that
the water in flowing from it touches only a line, as would
be the case in a plate of no thickness. To secure this result
the inner edge of the opening has a square corner, which alone
is touched by the water. In precise experiments the orifice
may be in a metallic plate whose
thickness is really small, as at 4 in
Fig. 25, but more commonly it is
cut in a board or plank, care being
taken that the inner edge is a
definite corner. It is usual to bevel
the outer edges of the orifice as at
C, so that the escaping jet may by
no possibility touch the edges ex-
cept at the inner corner. The term “orifice in a thin plate ” is
often used to express the condition that the water shall only
touch the edges of the opening along a line. This arrange-
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ment may be regarded as a kind of standard apparatus for the
measurement of water, for, as will be seen later, the discharge
is modified if the inner corner is rounded, and different de-
grees of rounding give different discharges. Orifices arranged
as in Fig. 25 are accordingly always used when water is to be
measured by the use of orifices.

The contraction of the jet which is always observed when
water issues from a standard orifice as described above is a
mest interesting and important phenomenon. It is due to the
circumstance that the particles of water as they approach the
orifice move in converging directions, and that these directions
continue to converge for a short distance beyond the plane of
the orifice. It is this contraction of the jet that causes only
the inner corner of the orifice to be touched by the escaping
water. The appearance of such a jet under steady flow, issuing
from a circular orifice, is that of a clear crystal bar whose
beauty cxcites the admiration of every observer. The place
of greatest contraction is at a distance from the plane of the
orifice of about one-half its diameter, and beyond this point
" the jet gradually enlarges in size, while its surface becomes
more or less disturbed owing to the resistance of the air and
other causes. In the case of square and rectangular orifices
the contraction of the jet is also observed, its edges being
angular and its cross-section similar to that of the orifice until
the place of greatest contraction is passed.

Owing to this contraction the discharge from a standard
orifice is always less than the theorectic discharge. It is the
object of this chapter to determine how the theoretic formulas
arc to be modified so that they may be used for the practical
purposcs of the measurement of water. This is to be done by
the discussion of the results of experiments. It will be sup-
posed, unless otherwise stated, that the size of the orifice is
small compared with the cross-section of the reservoir, so that
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the effect of velocity of approach may be neglected (Art. 25).

Prob. 47. Under a head of 6 feet the discharge from an
orifice is 3.74 gallons per second. What head is necessary in
order that the discharge may be one cubic foot per second ?

ARTICLE 35. THE COEFFICIENT OF CONTRACTION.

The coefficient of contraction is the number by which the
area of the orifice is to be multiplied in order to give the area
of the least cross-section of the jet. Thus, if ¢ be the co-
efficient of contraction, a the area of the orifice, and 4’ that of
the jet,

’

& =ca . . . . . . . . (20

The coefficient of contraction is evidently always less than
unity. '

The only direct method of finding the value of ¢’ is to
measure by callipers the dimensions of the least cross-section
of the jet. The size of the orifice can usually be determined
with accuracy, but no great precision can be attained in
measuring the jet. To find ¢ for a circular orifice let £ and &’
be the diameters of the sections @ and 2’ ; then

, al dlt . ,
c=;=(£—i—) e e o s e e (20)

~ Therefore the coefficient of contraction is the square of the
ratio of the diameter of the jet to that of the orifice. In this
way NEWTON found for ¢ the value 0.71; BORDA, 0.65; Bos-
SUT, from 0.66 to 0.67; MICHELOTTI, from 0.57 to 0.624 with
a mean of 0.61. EYTELWEIN gave 0.64 as a mean value, and
WE‘ISBACH mentions 0.63.

As a mean value the following may be kept in mind by the
student :
Coefficient of contraction ¢/ = 0.62;
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or, in other words, the minimum cross-section of the jet is 62
per cent of that of the orifice. This value, however, undoubt-
edly varies for different forms of orifices and for the same
orifice under different heads, but little is known regarding the
extent of these variations or the laws that gdvern them. Prob-
ably ¢’ is slightly smaller for circles than for squares, and
smaller for squares than for rectangles, particularly if the rect-
angle be long compared with .its width. Probably also ¢ is
larger for low heads than for high heads.

Prob. 48. The diameter of a circular orifice is 1.995 inches.
Three measurements of the diameter of the least cross-section
of the jet give the values 1.55, 1.56, and 1.59 inches. Find the
coefficient of contraction.

ARTICLE 36. THE COEFFICIENT OF VELOCITY.

The coefficient of velocity is the number by which the theo-
retic velocity of flow from the orifice is to be multiplied in
order to give the actual velocity at the least cross-section of
the jet. Thus, if ¢, be the coefficient of velocity, V' the theo-
retic velocity due to the head on the centre of the orifice, and
v the actual velocity at the contracted section,

v=c¢V=c¥ogh . . . . . . (21)
The coefficient of velocity must be less than unity, since the

force of gravity cannot generate a greater velocity than that
due to the head.

The velocity of flow at the contracted section of the jet
cannot be directly measured. To obtain the value of the co-
efficient of velocity, indirect observations have been taken on
the path of the jet. Referring to Art. 30, it will be seen that
when a jet flows from an orifice in the vertical side of a vessel
it takes a path whose equation is
gx

=25
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in which 2 and y are the co-ordinates of any point of the path
measured from vertical and horizontal axes, and » is the ve-
locity at the origin. Now placing for v its value ¢, ¥ 2g%, and
solving for ¢, , gives .

= —2_4’-/7 .
Therefore ¢, becomes known by the measurement of the two
co-ordinates x and y and the head /4.

G

In conducting this experiment it would be well to have a
ring, a little larger than the jet, supported by a stiff frame
which can be moved until the jet passes through the ring.
The flow of water can then be stopped, and the co-ordinates of
the centre of the ring determined. By placing the ring at
different points of the path different sets of co-ordinates can be
obtained. The value of x should be measured from the con-
tracted section rather than from the orifice, since v is the
velocity at the former point and not at the latter.

By this method of the jet BOssUT in two experiments
found for the coefficient of velocity the values 0.974 and 0.980,
MICHELOTTI in three experiments obtained 0.993, 0.995, and
0.983, and WEISBACH deduced 0.978. Great precision cannot
be obtained in these determinations, nor indeed is it necessary
for the purposes of hydraulic investigation that ¢, should be
accurately known for standard orifices. As a mean value the
following may be kept in the memory:

Coefficient of velocity ¢, = 0.98 ;

or, the actual velocity of flow at the contracted section is g8
per cent of the theoretic velocity. The value of ¢, is greater
for high than for low heads, and may probably often exceed
0.99.

Another method of finding the coefficient ¢, is to place the
orifice horizontal so that the jet will be directed vertically up-
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wara as in Fig. 12, Art. 20. The height to which it rises is the
velocity height %,, or

b=,
28
in which » is the actual velocity ¢, ¥2g4. Substituting, this
value of 7 gives

by = ¢k,
from which, when %, is measured, ¢, is computed. For ex-
ample, under a head of 23 feet a stream was found to rise to a

height of 22 feet; then
=¥ %: ¥ %=0.978.

This method, like the preceding, fails to give good results for
high velocities owing to the resistance of the air, and moreover
it is impossible to measure with precision the height 4,.

Prob. 49. MICHELOTTI found the range of a jet to be 6.25
meters on a horizontal plane 1.41 meters below the vertical
orifice, which was under a head of 7.19 meters. Compute the
coefficient of velocity.

ARTICLE 37. THE COEFFICIENT OF DISCHARGE.

The coefficient of discharge is the number by which the
theoretic discharge is to be multiplied in order to obtain the
actual discharge. Thus, if ¢ be the coefficient of discharge,
Q the theoretical and ¢ the actual discharge per second,

g=cQ . .« « « v« o . (22)
Evidently ¢ is a number less than unity.
The coefficient of discharge can be accurately found by

allowing the flow from an orifice to fall into a vessel whose
cubic contents are known with precision. The quantity ¢ is
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thus determined, while Q is computed from the formulas of the
last chapter. Then .

(22)

S
I
{WiE

For example, a circular orifice of o.1 feet diameter was kept
under a constant head of 4.677 feet; during a time of 5§ minutes
32} seconds the jet flowed into a measuring vessel which was
found to contain 27.28 cubic feet. Here the actual discharge
per second was

__27.28
T 332.2

= 0.08212 cubic feet.

The theoretic discharge, from formula (8), is
Q = m X 0.05" X 8.02 ¥4.677 = 0.1361 cubic feet.
Then, for the coefficient of discharge,

— 0.08212 __ 0.604.

0.1361

In this manner thousands of experiments have been made
upon different forms of orifices under different heads, for ac-
curate knowledge regarding this coefficient is of great impor-
tance in practical hydraulic work.

The following articles contain values of the coefficient of
discharge for different kinds of orifices, and it will be seen
that in general ¢ is greater for low heads than for high heads,
greater for rectangles than for squares, and greater for squares
than for circles. Tts value ranges from 0.59 to 0.63 or higher,
and as a mean to be kept in mind by the student there may
be stated :

~ Coefficient of discharge ¢ = 0.61 ;
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or, the actual discharge from orifices such as are shown in Fig.
25 is 61 per cent of the theoretic discharge.

The coefficient ¢ may be expressed in terms of the coef-
ficients ¢/ and ¢,. Let @ and @’ be the areas of the orifice and
the cross-section of the contracted jet, and Q and ¢ the theo-
retic and actual discharge per second. Then
g _a Vzgé _a

= H -

Q a¥2gh T a

But (Art. 34) the ratio @’ : @ is the coefficient ¢/; therefore
ce=deie v v o oo v (23)

or, the coefficient of discharge is the product of the coefficients
of contraction and velocity.

Prob. 50. What is the discharge in gallons per minute from
a circular orifice one inch in diameter under a head of 12
inches, the coefficient of discharge being 0.609?

Prob. 51. The diameter of a contracted circular jet was
found to be 0.79 inches, the diameter of the orifice being
one inch. Under a head of 4 feet the actual discharge per
minute was found to be 3.21 cubic feet. Find the coefficient
of velocity.

ARTICLE 38. CIRCULAR VERTICAL ORIFICES.

Let % be the head on the centre of a vertical circular orifice
whose diameter is 4. The theoretic discharge per second is
found from formula (10), Art. 24, by placing for # its value }4,"
and the actual discharge per second is

_ —f( 1.d 5 &
g=c.dnd Vagh(1— 35— 10 G
' 105 d°

—— — etc.}, . (2
Tiors 7 etc.), . (24)
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in which ¢ is the coefficient of discharge. In case /£ becomes
large compared with &, the negative terms in the parenthesis
may be neglected, and

g=ctnd'Vagh, . . . . . . (24)

which is the same as the formula for horizontal circular orifices
(Art. 21).

The following table of values of ¢ is abridged from the
results deduced by HAMILTON SMITH, Jr.,* as determined by
the discussion of all the best experiments. The table applies
only to standard orifices.

TABLE VI. COEFFICIENTS FOR CIRCULAR VERTICAL ORIFICES.

Head Diameter of Orifice in Feet,
in eret. 0.02 0.04 0.07 o.x 0.2 0.6 1.0
0.4 0.637 0.624 | 0.618
0.6 " 0.655 .630 .618 .613 | 0.60r | 0.593
0.8 .648 .626 .615 .610 601 .594 | 0.590
1.0 .644 .623 .612 .608 .600 .595 .591
1.5 .637 .618 .608 .605 600 .596 .593
2. .632 .614 .607 .604 .599 .597 .595
2.5 .629 .612 . 605 .603 .599 .598 .596
3 .627 611 .604 .603 .599 .598 1 .597
4 .623 .609 .603 .602 .599 597 5_96
6 .618 .607 .602 .600 .598 .597 .596
8. .614 .605 .6or .600 .598 .596 .596
10. 611 .603 .599 .598 .597 .596 .505
20. .601 -599 -597 596 -596 -596 -594
50. .596 -595 -594 -594 -594 -594 -593
100. -593 -592 -592 -592 -592 592 .592

This table shows that the coefficient ¢ decreases as the size
of the orifice increases, and that for diameters less than 0.2

* Hydraulics, p. 59.



8o FLOW OF WATER THROUGH ORIFICES. ([CHar. IV,

feet it decreases as the head increases. It may be presumed
that the cause of this variation is due to a more perfect con-
traction of the jet for large heads and'’ large orifices than for
small heads and small orifices.

In applying the above coefficients to actual problems, the

approximate formula
g =cind" Vagh

may be used except for the values found above the horizontal
lines in the last three columns. For these, if precision be re-
quired, the accurate expression for ¢ must be employed. The
error committed by using the approximate formula for the
values above the horizontal lines will depend upon the ratio of
d to /; as shown, in Art. 24, this error will be about two-tenths
of one per cent when /% = 24, and about eight-tenths of one
per cent when /2 = 4.

Prob. 52. Find from the table the coefficient of discharge
for a circular orifice of two inches diameter under a head of
1.75 feet.

Prob. 53. Compute the probable actual discharge through a
circular orifice of £ inches diameter under a head of 1 foot 3
inches.

ARTICLE 39. SQUARE VERTICAL ORIFICES.

Let a square orifice whose side is & be placed with its edges
truly parallel and perpendicular to a horizontal plane. Let /4,,
4,, and % be the heads of water on its upper edge, lower edge,
and centre, respectively. The theoretic discharge per second
is found by replacing & by & in formula (g) of Art. 22, and the
actual discharge is

g=rc 3dV(h3— 1. . . . . . (235)
Further, as shown in Art. 22, if / be large compared with 4,
the discharge may be computed by the simpler formula

g=cd ¥Vogh. . . . . . . (25)
In both formulas ¢ is the coefficient of discharge (Art. 36).
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The following values of the coefficient ¢ have been taken
from a more extended table deduced by SMITH by an ex-
haustive discussion of experiments. They are applicable only
to cases where the orifice has a sharp inner edge so that the
contraction of the jet may be perfectly formed (Art. 33).

TABLE VII. COEFFICIENTS FOR SQUARE VERTICAL ORIFICES.

Head Side of the Square in Feet.
A
in Feet. 0.02 0.04 0.07 0.1 0a’ 0.6 1.0
0.4 0.643 0.628 0.621
0.6 0.660 .636 .623 .617 | 0.605 | 0.598 .
0.8 .652 .631 .620 .615 .60os .600 | 0.597
1.0 .648 .628 .618 .613 .605 .6or .599
1.5 .641 .622 .614 .610 .605 .602 .6o1
2. .637 .619 .612 .608 605 .604 .602
2.5 .634 .617 .610 .607 .60s5 .604 .602
3. .632 .616 .60og .607 .605 .604 .603
4. .628 .614 .608 .606 .605 .603 " 6oz
6. .623 .612 .607 .605 .604 603 602
S. .619 .610 .606 .605 .604 .603 (o2
10. .616 .608 .605 .604 .603 .602 .6u1
20 .606 .604 .602 .602 .602 .6o1 .600
50. .602 .601 .601 .600 .600 .599 599
100. .599 .598 .598 .598 .598 .598 .508

The same general laws of variation are here observed as for
circular orifices, the coefficient decreasing as the head increases
and as the size of the square increases. It should be noticed
that the coefficients are always slightly larger than those for
circles of the same diameter; this is perhaps caused by the
less perfect contraction of the jet due to the corners of the
square.

The horizontal lines drawn in the last three columns of the
table indicate the limit 2 = 44; so that the exact formula is to
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be used for cases that fall above these lines. The error in the
use of the approximate formula when %= 3.54 is about one
tenth of one per cent, which is probably less than the error in
applying the coefficient to any given orifice in practice. For
all values except those above the horizontal lines the error of
the approximate formula is much less than one-tenth of one
per cent.

There are few recorded experiments on large square orifices.
ELLIS measured the discharge from a vertical orifice 2 feet
square in an iron plate which furnishes the following results:%*

For 4 := 2.07 feet, ¢ = 0.611;
For % = 3.05 feet, ¢ = 0.597;
For /i = 3.54 feet, ¢ = 0.604;

which indicate that a mean value of about 0.6 for ¢ is all that
can be safely stated for large orifices.

Prob. 54. Find from the table the coefficient of discharge
for a square whose side is 3 inches when the head on its centre
is 1.8 feet.

Prob. 55. Compute the probable actual discharge from a
vertical orifice one foot square when the head on its upper edge
is one foot.

ARTICLE 40. RECTANGULAR VERTICAL ORIFICES.

Rectangular vertical orifices with the longest edge hori-
zontal are frequently employed for the measurement of water.
If 4 be the breadth, & the depth, %,, %, , and / the head on the
upper edge, lower edge, and centre, and ¢ the coefficient of dis-
charge, the discharge per second is

g=c.WVoghd—hY, . . . . . (26)

* Transactions American Society Civil Engineers, 1876, vol. v. p. g2,
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or more simply, if % be greater than 44,
g=c.bd¥2gh.. . . . . . . . (26)

The following values of the coefficient ¢ have been compiled
and computed from the discussion given by FANNING.* Those
above the horizontal lines are to be used in the exact formula,
and those below in the approximate formula.

TABLE VIII. COEFFICIENTS FOR RECTANGULAR ORIFICES

1 FOOT WIDE.
Head Depth of Orifice in Feet.
A
in Feet, 0.1325 0.3§5 0.50 0.75 1.0 1.5 3.0
0.4 0.634 | 0.633 0.622
0.6 .633 .633 .619 | 0.614
0.8 .633 .633 .618 .612 | 0.608
I. .632 .632 .618 .612 .606 | 0.626
1.5 .630 .631 .618 611 .605 .626 | 0.628
2. .629 .630 & .617 611 . 605 .624 .630
2.5 .628 .628 .616 611 .60s5 .616 .627
3. .627 .627 .615 610 605 .614 619
4. 624 .624 .614 .609 605 .612 .616
6. .615 .615 .609 .604 .602 _606* .610
8. .609 .607 .603 .602 6o1 .602 .604
10. .606 .603 .601 .6o1 .601 .60o1 .602
20. .6or .6o1 .6or .602

This table shows that the variation of ¢ with the head fol-
lows the same law as for circles and squares. It is also seen
that for a rectangle of constant breadth the coefficient of dis-
charge increases as its depth decreases, from which it is to be
inferred that for a rectangle of constant depth the coefficient
increases with the breadth, and this is confirmed by other ex-
periments. The value of ¢ for a rectangular orifice is seen to

* Treatise on Water Supply Engineering, p. 205.
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be but slightly larger than for a square whose side is equal to
the depth of the rectangle. In selecting a coefficient for use
with an orifice whose size falls outside the limits of the table,
it should be borne in mind that large orifices have a smaller
value of ¢ than small orifices.

A comparison of the values of ¢ for the orifice one foot square
with those in the last article shows that the two sets of co-
efficients disagree, these being about one per cent greater than
those. This is probably due to the less precise character and
smaller number of experiments from which they were deduced.
Further experimental data on rectangular orifices are needed.

Prob. 56. What head is required to discharge § cubic feet
per second through an orifice 3 inches deep and 12 inches
long?

Prob. 57. What is a probable coefficient of discharge for an
orifice 3 inches deep and 6 inches long, the head on the upper
cdge being 6 inches?

ARTICLE 41. THE MINER’S INCH.

The miner’s inch may be roughly defined to be the quantity
of water which will flow from a vertical standard orifice one
inch square, when the head on the centre of the orifice is 63
inches. From Table VII the coefficient of discharge is seen to
be about 0.623, and accordingly the actual discharge in cubic
feet per second is

0.623 X 8.02 6.5
7= " \/; = 00255

and the discharge in one minute is
60 X 0.0255 = 1.53 cubic feet.

The mean value of one miner’s inch is therefore about 1.5 cubic
feet per minute.

The actua: value of the miner's inch, however, differs con-
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siderably in different localities. BOWIE states that in different
counties of California it ranges from 1.20 to 1.76 cubic feet per
minute.* The reason for these variations is due to the fact
that when water is bought for mining or irrigating purposes
a much larger quantity than one miner’s inch is required, and
hence larger orifices than one square inch are needed. Thus,
at Smartsville a vertical orifice or module 4 inches deep and
250 inches long, with a head of 7 inches above the top edge,
is said to furnish 1000 miner’s inches. Again, at Columbia
Hill, a module 12 inches deep and 12% inches wide, with a head -
of 6inches above the upper edge, is said to furnish 200 miner’s
inches. In Montana the customary method of measurement
is through a vertical rectangle, one inch deep, with a head on
the centre of the orifice of 4 inches, and the number of miner’s
inches is said to be the same as the number of linear inches in
the rectangle; thus under the given head an orifice one inch
deep and 60 inches long would furnish 60 miner's inches. The
discharge of this is said to be about 1.25 cubic feet per minute,
or 75 cubic feet per hour.

A module is an orifice which is used in selling water, and
which under a constant head is to furnish a given number of
miner’s inches, or a given quantity per second. The sizes and
proportions of modules vary greatly in different localities, but
in all cases the important feature to be observed is that the
head should be maintained nearly constant in order that the
consumer may receive the amount of water for which he bar.
gains and no more.

The simplest method of maintaining a constant head is by
placing the module in a chamber which is provided with a gate
that regulates the entrance of water from the main reservoir or
canal. This gate is raised or lowered by an inspectdr once or
twice a day so-as to keep the surface of the water in the cham-

* BowiE, Treatise on Hydraulic Mining, p. 268.
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ber at a given mark. This plan though simple is costly, except
in works where many modules are used, and where-a daily in-
spection is necessary in any event, and it is not well adapted
to cases where there are frequent and considerable fluctuations
in the surface of the water in the feeding canal.

Numerous methods have been devised to secure a constant
head by automatic appliances; for instance, the gate which
admits water into the chamber may be made to rise and fall
by means of a float upon the surface; the module itself may
be made to decrease in size when the water rises, and to in-
crease when it falls, by a gate or by a tapering plug which
moves in and out and whose motion is controlled by a float.
These self-acting contrivances, however, are liable to get out
of order, and require to be inspected more or less frequently.*

The use of the miner’s inch, or of a module, as a standard
for selling water, may be said to have a certain advantage in
simplicity, as it depends merely upon an arbitrary definition.
It is, however, greatly to be desired for the sake of uniformity
that water should be bought and sold by the cubic foot. Only
in this way can comparisons readily be made, and the con-
sumer be sure of obtaining exact value for his money.

Prob. 58. If a miner’s inch be I.57 cubic feet per minute,
how many miner’s inches will be furnished by a module 2
inches deep and 50 inches long with a head of 6 inches above
the upper edge?+

ARTICLE 42. SUBMERGED ORIFICES.

It is shown in Art. 26 that the effective head which causes
the flow from a submerged orifice is the difference in level
between the two water surfaces. The discharge from such ar

* A cheap and simple method of maintaining a nearly constant head by means
of an excess weir is described by FOOTE in the Transactions American Society
of Civil Engineers for March, 1887.

$ See BowiE'’s Hydraulic Mining, page 125.
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orifice, its inner edge being a sharp -definite corner as in Fig.
25, has been found by experiment to be somewhat less than
when the flow occurs freely, or, in other words, the valucs of
the coefficients of discharge are smaller than those given in
the preceding articles. The difference, however. is very slight
for large orifices and large heads, and for orifices one inch
square under six inches head is about 2 per cent.

The following table gives values of the coefficient of dis-
charge for submerged orifices as determined by the experi-
ments of HAMILTON SMITH, Jr. The height of the water on
the exterior of the orifices varied from 0.57 to 0.73 feet above
their centres.

TABLE IX. COEFFICIENTS FOR SUBMERGED ORIFICES

Size of Orifice in Feet.
Effective
Head in Feet. Circle Square Circle Square Rectangle
0.05 0.0§ o.1 . o1 0.0§ X 0.3
0.5 0.615 0.619 o 603 0.608 0o 623
1.0 .610 .614 602 .606 -622
1.5 607 612 600 .605 . 621
2.0 605 .610 599 .604 . 620
2.5 . .603 .608 508 .604 .619
3.0 .002 .607 .508 .604 .618
4.0 .601 .606 .598 ’ .604
[

The theoretic discharge from a submerged orifice is the
same for the same effective head whatever be its distance be-
low the lower water level. It is not likely, however, that the
same coefficients of discharge would be found for deeply sub-
merged orifices as for those submerged but slightly. Experi-
ments in this direction from which to draw conclusions are
lacking.

" Prob. 59. An orifice one inch square in a gate such asshown
in Fig. 7, Art. 14, is 3 feet below the higher water level and 2
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feet below the lower water level. Compute the discharge in
cubic feet per minute. .

ARTICLE 43. SUPPRESSION OF THE CONTRACTION.

When a vertical orifice has its lower edge at the bottom of
the reservoir, as shown at A in Fig. 26, the particles of water
flowing through its lower portion move in
o lines nearly perpendicular to the plane of
== the orifice, or the contraction of the jet
- e does not form on the lower side. This
is called a case of suppressed or incom-
plete contraction. The same thing occurs,
but in a lesser degree, when the lower edge
of the orifice is near the bottom as shown
at B. In like manner, if an orifice be placed so that one of its
vertical edges is at or near a side of the reservoir, as at C,
the contraction of the jet is suppressed upon one side, and if
it be placed at the lower corner of the reservoir, suppression
occurs both upon one side and the lower part of the jet.

The effect of suppressing the contraction is, of course, to
increase the cross-section of the jet at the place where full con-
traction would otherwise occur, and it is found by experiment
that the discharge-is likewise increased. Experiments also .
show that more or less suppression of the contraction will
occur unless each edge of the orifice is at a distance at least
equal to three timesits least diameter from the sides or bottom
of the reservoir.

The experiments of LESBROS and BIDONE furnish the
means of estimating the increased discharge caused by sup-
pression of the contraction. They indicate that for square
orifices with contraction suppressed on one side the coefficient
of discharge is increased about 3.5 per cent, and with contrac-
tion suppressed on two sides about 7.5 per cent. For a rect-
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angular orifice with the contraction suppressed on the bottom
cdge the percentages are larger, being about 6 or 7 per cent
when the length of the rectangle is four times its height, and
from 8 to 12 per cent when the length is twenty times the
height. The percentage of increase, moreover, varies with
the head, the lowest heads giving the lowest percentages.

It is apparent that suppression of the contraction should
be avoided if accurate results are desired. The experiments
from' which the above conclusions are deduced were made upon
small orifices with heads less than 6 feet, and it is not known
how they will apply to large orifices under high heads.

Prob.-60. Compute the probable discharge from a vertical
orifice one foot square when the head on its upper edge is one
foot, the contraction being suppressed on the lower edge.

ARTICLE 44. ORIFICES WITH ROUNDED EDGESs.

If the inner edge of the orifice be rounded, as shown in Fig.
27, the contraction of the jet is modified, and the discharge is
increased. With a slight degree of
rounding, as at A4, a partial contrac-
tion occurs; but with a more com-
plete rounding, as at C, the parti-
cles of water issue perpendicular to
the plane of the orifice and there is
no contraction of the jet. If 2 be

the arca of the least cross-section of Fro. 21
the orifice, and @’ that of the jet, the coefficient of contraction
(Art. 34) is ,
= f—.
a

For a standard square-edged orifice (Fig. 25) the mean value of
 is 0.62, but with a rounded orifice ¢ may have any value be-
tween 0.62 and 1.0, depending upon the degree of rounding.



Q0 FLOW OF WATER THROUGH ORIFICES. [Cuar. IV,

The coefficient of discharge for square-edged orifices has a
mean value of about 0.61 ; this is increased with rounded edges
and may have any value between 0.61 and 1.0, although it is
not probable that values greater than 0.95 can be obtained
except by the most careful adjustment of the rounded edges to
the exact curve of a completely contracted jet.

A rounded interior edge in an orifice is therefore always a -

source of error when the object of the orifice is the measure-
ment of the discharge. If a contract provides that water shall
be gauged by standard orifices, care should always be taken
that the interior edges do not become rounded either by acci-
dent or by design.

Prob. 61. If an orifice with rounded edges has a coefficient of
contraction of 0.85 and a coefficient of discharge of 0.7, find
the coefficient of velocity.

ARTICLE 45. THE MEASUREMENT OF WATER BY ORIFICES.

In order that water may be accurately measured by the use
of orifices many precautions must be taken, some of which
have already been noted, but may here be briefly recapitulated.
The area of the orifice should be small compared with the size
of the reservoir in order that velocity of approach may not
affect the flow (Art. 25). The inner edge of the orifice must
have a definite right-angled corner, and its dimensions are to
be accurately determined. If the orifice be in wood, care should
be taken that the inner surface be smooth, and that it be kept
free from the slime which often accompanies the flow of water
even when apparently clear. That no suppression of the con-
traction may occur, the edges of the orifice should not be nearer
than three times its least dimension to a side of the reservoir.

Orifices under very low heads should be avoided, because
slight variations in the head produce relatively large errors,
and also because the coefficients of discharge vary more rapidly
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and are probably not so well determined as for cases where the
head is greater than four times the depth. For similar reasons
very small orifices are .not desirable. If the head be very low
on an orifice, vortices will form which render any estimation of
the discharge unreliable.

The measurement of the head, if required with precision,
must be made with the hook gauge which is described in Art.
50. For heads greater than two or three feet the readings of
an ordinary glass gauge placed upon the outside of the reser-
voir will usually prove sufficient, as this can be read to hun-
dredths of a foot with accuracy. An error of 0.01 feet when the
head is 3.00 feet produces an error in the computed discharge
of less than two-tenths of one per cent; for, the discharges be-
ing proportional to the square roots of the heads, 4351 divided

by 43.00 equals 1.0017. For the rude measurements in con-

nection with the miner’s inch a common foot-rule will probably
suffice.

The effect of temperature upon the discharge remains to be
noticed ; this is only appreciable with small orifices and under
low heads. UNWIN found that the discharge was diminished
one per cent by a rise of 144 degrees in temperature ; his orifice
was a circle 0.033 feet in diameter under heads ranging from
1.0 to 1.5 feet. SMITH found that the discharge was dimin-
ished one per cent by a rise of 55 degrees in temperature ; his
orifice was a circle 0.02 feet in diameter, under heads ranging
from 0.56 to 3.2 feet. This is a further reason why small ori-
fices and low heads are not desirable in precise measurements
of discharge.

The coefficients given in the preceding tables may be sup-
posed liable to a probable error of two or three units in the
third decimal place ; thus a coefficient 0.615 should really be
written 0.615 £+ 0.003; that is, the actual value is as likely to
be between 0.612 and 0.618 as to be outside of those limits.
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The probable error in computed discharges due to the coeffi-
cient is hence about one-half of one per cent. To this are
added the errors due to inaccuracy of observation, so that it is
thought that the probable error of careful work with standard
circular orifices is at least one per cent. The eomputed dis-
charges are hence liable to error in the third significant figure, so
that it is useless to carry numerical results beyond. four figures
when based upon tabular coefficients. As a precise method of
measuring small quantities of water, standard orifices take a
high rank when the observations are conducted with care.
With rectangular orifices the probable error is liable to be two
per cent or more.

Prob. 62. What error is produced in the computed discharge
if the head be read 1.38 feet when it should have been 1.385
feet? '

ARTICLE 46. THE ENERGY OF THE DISCHARGE.

A jet of water flowing from an orifice possesses by virtue
of its velocity a certain energy or potential work, which is al-
ways less than the theoretic energy due to the head (Art. 31).
Let / be the head and W the weight of water discharged per
second, then the theoretic energy per second is

o K= Wh.

Let v be the actual velocity of the water at the contracted sec-
tion of the jet; then the actual energy per second of the water
as it passes that section is

k:Wg. e e s e e e (27)

But E'”l is less than % because = is less than the theoretic ve-
locity; or, if ¢, be the coefficient of velocity (Art. 36),

v=c, ¥2gh,
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whence —=20'%;
2g

and hence the effective energy is
E=cWh . . . .. . (27)
The efficiency of the jet accordingly is

e = = AN
which is always less than unity.

For the standard orifice with square inner edges a mean
value of ¢, is 0.98. The mean effective energy of the jet at the
contracted section is hence

k= 0.96Wh;

that is, the effective energy is g6 per cent of the theoretic. For
high heads ¢, is greater than 0.98, and the efficiency becomes
greater than g6 per cent. It is not possible in practice to take
advantage of this high efficiency, on account of the difficulty of
placing the vanes of a hydraulic motor so near the orifice, and
accordingly standard orifices are never used when the work of
the discharge is to be utilized.

The loss of energy, or potential work, is hence about 4 per
cent with the standard orifice. This is caused by the influence
of the edges of the orifice which retard the velocity of the
outer filaments of the jet. That these outer filaments move
slower than the central ones may be seen by placing fine sand
or sawdust in the water and observing that the greater part
passes out of the orifice in the interior of the jet.

Prob. 63. Prove that the energy due to the velocity of the
jet in the plane of the inner edge of the standard orifice is
about 37 per cent of the theoretic energy. How is the remain-
ing 63 per cent accounted for? .
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ARTICLE 47. DISCHARGE UNDER A DROPPING HEAD.

If a vessel or reservoir receives no inflow of water while an
orifice is open, the head drops and the discharge decreases in
each successive second. Let A be the head on the orifice at a
certain instant, and % the head 7 seconds later; let A be the
area of the uniform horizontal cross-section of the vessel, and 2
the area of the orifice. Then, as demonstrated in Art. 28, the
time ¢ is ‘

=2 (vB— VR
a¥2g
This is the theoretic time; to determine the actual time the
coefficient of discharge must be introduced. Referring to the

demonstration, it is seen that @ ¥'2gy.6¢ is the theoretic dis-
charge in the time 87; hence the actual discharge is ¢.a ¥/2¢gy 67,
and accordingly the above equation is to be thus modified :
24
ca¥2g

(VE-VE), . . . . . (28)

which is the practical formula for the time in which the water
level drops from A to 4. In using this formula ¢ may be taken
from the tables in the preceding articles, an average value being
selected corresponding to the average head.

Experiments have been made to determine the value of ¢
by the help of this formula; the liquid being allowed to flow,
A, a, H, &, and ¢ being observed, whence ¢ is computed; In
this way ¢ for mercury. has been found to be about 0.62.* Only
approximate mean values can be found in this manner, since ¢
varies with the head, particularly for small orifices (Art. 38).
For a large orifice the time of descent is usually so small that
it cannot be noted with precision, and the friction of the liquid

* DownNING's Elements of Practical Hydraulics (London, 1875), p. 187.
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on the sides of the vessel may also introduce an element of un-
certainty. This experiment has, therefore little value except
asillustrating and confirming the truth of the theoretic formulas.

The discharge in one second when the head is A at the
beginning of the second is found as follows: The above equa-
icn may be written in the form

= tea¥2g
VH— Y = 4.

By squaring both members, transposing and multiplying by A4,
this becomes
A(H — 1) = tea VEE( VH — M) :
44
But the first term of this equation is the quantity discharged

in ¢ seconds; therefore the discharge Q for # seconds may be
written

- /2eH — 1052
Q—tca(fng tczA)’

and the discharge in one second is

g=ca<V2g_1f—c§—>. N ¢ 1))

If A = oo, this becomes ca V@", which should be the case,
for then A would remain constant. The head at the end of one

Q

second isk = H — ;Z-, and at theend of # secondsisk = H — L

For example, let an orifice one foot square in a reservoir of
10 square feet section be under a head of g feet, and ¢ = 0.602.
Then the discharge in one second is 13.9 cubic feet, and the
head drops to 7.61 feet. The discharge in the next second is
12.7 cubic feet, and the head drops to 6.34 feet.
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Prob. 64. Find the time required to discharge 480 gallons
from an orifice 2 inches in diameter at 8 feet below the water
level in a tank which is 4 X 4 feet in cross-section.

ARTICLE 48. EMPTYING AND FILLING A CANAL Lock.

A canal lock is emptied by opening one or more orifices in
the lower gates. Let a be their area, and /A the head of water
on them when the lock is full; let A be the area of the hori-
zontal cross-section of the lock. Then in the formula of the
last article, £ = o, and the time of emptying the lock is

_24VH

t= —. .
ca¥2g

e e e e . (30

If the discharge be free into the air, A is the distance from the
centre of the orifice to the level of the water in the lock when
filled ; but if, as is usually the case, the orifices ‘be below the
level of the water in the tail bay, A is the difference in height
between the two water levels. The tail bay is regarded as so
large compared with the lock that its water level remains con-
stant.

For example, let it be required to find the time of empty-
ing a canal lock 80 feet long and 20 feet wide through two
orifices, each of 4 square feet area, the head upon which is 16
feet when the lock is filled. Using for ¢ the value 0.6 for orifices
with square inner edges, the formula gives

t_2x8o><20><4
T 0.6 X 8 X 8.02

= 333 seconds = 5§ minutes.

If, however, the circumstances be such that ¢ is 0.8, the time is
about 250 seconds, or 4} minutes. It is therefore seen that it
is important to arrange the orifices of discharge in canal locks
with rounded inner edges.
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* The filling of the lock is the reverse operation. Here the
water in the head bay remains at a constant level, and the dis-
" charge through the orifices in the upper gates decreases with
the rising head in the lock. Let A be the effective head on
the orifices when the lock is empty, and y the effective head
at any time 7 after the beginning of the discharge. The area
of the section of the lock being A4, the quantity A8y is dis-

FiG. 28.

charged in the time 67, and this is equal to ca ¥'2gy 62, if a be
the area of the orifices and ¢ the coefficient of discharge,
Hence the same expression as (30) results, and the times of
filling and emptying a lock are equal if the orifices are of the
same dimensions and under the same heads. The areaa for
any case is found from (30), in which 4, A, and ¢ are given.

Prob. 65. Compute the areas of the two orifices when
A = 1800 square feet, £ = 3 minutes, ¢ = 0.7, A = 7 feet for
the upper and 12 feet for the lower orifice. '
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CHAPTER V.
FLOW OF WATER OVER WEIRS.

ARTICLE 49. DESCRIPTION OF A WEIR.

A weir is a notch in the top of the vertical side of a vessel
or reservoir through which water flows. The notch is generally
rectangular, and the word weir will be used to designate a rect-
angular notch unless otherwise specified, the lower edge of the
rectangle being truly horizontal, and its sides vertical. The
lower edge of the rectangle is called the ¢ crest” of the weir.

i
i

. FiG. 29

In Fig. 29 are shown the outlines of two kinds of weirs, A be-
ing the more usual form where the vertical edges of the notch
are suficiently removed from the sides of the reservoir or feed-
ing canal, so that the sides of the stream may be fully con-
tracted ; this is called a weir with end contractions. In the form
at B, the edges of the notch are coincident with the sides of
the feeding canal, so that the filaments of water along the sides
pass over without being deflected from the vertical planes in
which they move; this is called a weir without end contrac-
tions, or with end contractions suppressed.

It is necessary in order to make accurate measurements of
discharge by a weir that the same precaution should be taken
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as for orifices (Art. 34), namely, that the.inner edge of the
notch shall be a definite angular corner so that the water
in flowing out may touch the crest only in a line, thus insur-
ing complete contraction. In precise observations a thin
metal plate will be used for a crest as
seen in Fig. 30, while in common work
it may be sufficient to have the crest
formed by a plank of smooth hard
wood with its inner corner cut to a
sharp right angle and its outer edge
bevelled. The vertical edges of the weir should be made in
the same manner for weirs with end contractions, while for
those without end contractions the sides of the feeding canal
should be smooth and be prolonged a slight distance beyond
the crest. It is also necessary to observe the same precautions
as for orifices to prevent the suppression of the contraction
(Art. 43), namely, that the distance from the crest of the weir to
the bottom of the feeding canal, or reservoir, should be greater
than three times the head of water on the crest. For a weir
with end contractions a similar distance should exist between
the vertical edges of the weir and the sides of the feeding canal.

'

The head of water A upon the crest of a weir is usually
much less than the breadth of the crest, . The value of A
should not be less than o.1 foot, and it rarely exceeds 1.5 feet.
The least value of & in practice is about 0.5 feet, and it does
not often exceed 20 feet. Weirs are extensively used for
measuring the discharge of streams, and for determi‘ning the
quantity of water supplied to hydraulic motors; the practical
importance of the subject is so great that numerous experi-
ments have been made to ascertain the laws of flow, and the
coefficients of discharge.

Prob. 66. If a feeding canal three feet wide discharges 12
cubic feet per second when the water is 2 feet deep, what is
the mean velocity of flow ?
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ARTICLE 50, THE HOOK GAUGE.

As the head on the crest of a weir is low it
must be determined with precision in order to
avoid error in the computed discharge (Art. 45).
The hook gauge, invented by BOYDEN about
1840, consists of a rod sliding vertically in fixed
supports, the amount of vertical motion being
determined by the readings of a vernier. The
vernier can be set to read 0.000 when the sharp
point of the hook is on the same level as the
crest of the weir; when the water is flowing
over the crest, the rod is raised by the slow-

h motion screw until the point of the hook is at

the water level. Before the point pierces the
surface or skin of the water, a pimple or pro-
tuberance is seen to rise above it due to capil-
lary action; the hook is then depressed until
this pimple is barely perceptible, when the point
is at the true water level. The head of water
on the crest is then indicated by the reading
of the scale and vernier. The best hook gauges
are made to read to ten-thousandths of a foot.
and it has been stated that an experienced ob-
server can in a favorable light detect differences
in level as small as 0.0002 feet. The surface
of water at the hook must be perfectly quiet,
and hence a box without a bottom or with
openings to admit the water is often placed
around it. Fig. 31 shows the hook gauge as
arranged by EMERSON.*

* EMERsON's Hydrodynamics (Springfield. Mass., 1881). p. 56.
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A cheaper form of hook gauge, and one sufficiently precise
in some classes of work, can be made by screwing a hook into
the foot of a levelling rod. The back part of the rod is then
held in a vertical position by two clamps on fixed supports,
while the front part is free to slide. It is easy to arrange a
slow-motion movement so that the point of the hook may be pre-
cisely placed at the water level. The reading of the vernier is
determined when the point of the hook is on the same level as
the crest of the weir, and by subtracting from this the subse-
quent readings the heads of water are known. A New York
levelling rod reading to thousandths of a foot is to be preferred.

The greatest error of a hook gauge is thought to be in set-
ting it for the level of the crest. In the larger forms of hooks
this may be done by taking elevations of the crest, and of the
point of the hook by means of an engineer’s level and a light
rod. With smaller hooks it may be done by having a stiff
permanent hook the elevation of whose point with respect to
the crest is determined by precise levels; the water is then al-
lowed to rise slowly until it reaches the point of this stiff hook,
when readings of the vernier of the lighter hook are taken.
Another method is to allow a small depth of waterto flow over
the crest and to take readings of the hook, while at the same
time the depth on the crest is measured by a finely graduated
scale. Still another way is to allow the water to rise slowly,
and to set the hook at the water level when the first filaments
pass over the crest ; this method is not a very precise one on
account of capillary attraction along the crest. As the error
in setting the hook is a constant one which affects all the sub-
sequent observations, especial care should be taken to reduce
it to a minimum by taking a number of observations from
which to obtain a precise mean result.

In rough gaugings of streams the precision of a hook gauge
is often not required, and the heads may be determined by
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simpler methods. For example, a post may be set with its top
on the same level as the crest of the weir, and the depth of
water over the top of the post be measured by a scale gradu-
ated to tenths and hundredths of a foot, the thousandths be-
ing either estimated or omitted entirely.

The head A on the crest of the weir is in all cases to be
measured several feet up stream from the crest, as indicated in
Fig. 30. This is necessary because of the curve taken by the
surface of the water in approaching the weir. The distance to
which this curve extends back from the weir depends upon
many circumstances (Art. 59), but it is considered that perfect-
ly level water will be found at 2 or 3 feet distance back for
small weirs, and at 6 or 8 feet for very large weirs. It is de-
sirable that the hook should be placed at least one foot from
the sides of the feeding canal, if possible. As this is apt to
render the position of the observer uncomfortable, some ex-
perimenters have placed the hook in a pail at a few feet dis-
tance from the canal, the water being led to the pail by a pipe :
this pipe should enter the feeding canal several feet above the
crest, and the water should enter it, not at its end, but through
a number of holes drilled at intervals along its circumference.

Prob. 67. Show by using formula (9)’ of Art. 22 that an
error of about one-half of one per cent results in the discharge
if an error of 0.001 feet be made in reading the head when
H =.0.3 feet. ’

ARTICLE 51. FORMULAS FOR THE DISCHARGE.

The theoretic discharge through a rectangular notch or
weir was found in Art. 22 to be

Q = § V5. 6",

in which & is the breadth of the notch, commonly called the
length of the weir, and /A the depth of water on the lower
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edge. It might be inferred that this depth is that in the plane
of the weir; but as the deduction of the formula supposes
nothing regarding the fall due to the surface curve, and regards
the velocity at any point above the crest as due to the head
upon that point below the free water surface, it seems that A
should be measured with reference to that surface, as is actu-
ally done by the hook gauge. The above formula then gives
the theoretic discharge per second, provided that there be no
velocity at the point where /A is measured, which can only be
the case when the area of the weir opening is very small com-
pared to that of the cross-section of the feeding canal. This
condition would be fulfilled for a rectangular notch placed at
the side of a large pond.

When there is an appreciable velocity of approach of the
water at the point where / is measured by the hook gauge,
the above formula must be modified. Let v be the mean
velocity in the feeding canal at this section; this velocity may
be regarded as due to a fall, %, from the surface of still water
at some distance up stream from
the hook, as shown in Fig. 32.
Now the true head on the crest of
the weir is A+ %, as this would
have been the reading of the -
hook gauge had it been placed Fic. 32.
where the water had no velocity. Accordingly the theoretic
discharge is

Q = §¥V2g . B(H + if,

in which A is read by the hook and % is determined from the
mean velocity v.

The actual discharge per second is always less than the
theoretic discharge, due to the contraction of the stream and
the resistances of the edges of the weir. To take account of
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these a coefficient is applied to the theoretic formulas in the
same manner as for orifices; these coefficients being deter-
mined by experiment, the formulas may then be used for
computing the actual discharge. It has also been proposed by
SMITH to modify the velocity-head %, owing to the fact that
the velocity of approach is not constant throughout the
section, but greater near the surface than near the bottom, as
in streams (Art. 107). Accordingly the following may be
written as an expression for the actual discharge:

g=c.§¥V2g KH+nn . . . . (31)

in which ¢ is the coefficient of discharge whose value is always
less than unity,.and »# is a number which lies between 1.0
and 1.5.*

The above formulas are not in all respects perfectly satis-
factory, and indeed many others have been proposed. The
actual discharge differs, however, so much from the theoreti-
cal that the final dependence must be upon the coefficients
deduced from experiment, and hence any fairly reasonable
formula may be used within the limits for which its coefficients
have been established. In spite of the objections which may
be raised against all forms of formulas, the fact remains that
the measurement of water by weirs is one of the most con-
venient methods, and probably the most precise method, unless
the quantity is so small as to pass through a circular orifice
less than one foot in diameter. With proper precautions the
probable error in measurements of discharge by weirs should
be less than two or three per cent.

Prob..68. Find the velocity-head %4 when the mean velocity
of approach is 20 feet per minute.

* SmiTH’s Hydraulics, p. 33.
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ARTICLE 52. VELOCITY OF APPROACH.

The velocity-head %, which produces the mean velocity of
approach v is (Art. 20)

v
k= Py 0.015557"

Accordingly to obtain % the value of v must be determined.
One way of doing this is to observe the time of passage of a
float through a given distance; but this is not a precise method.
The usual method is to compute v from an approximate value
of the discharge, which is first computed by regarding v, and
hence %, as zero. This determination is rendered possible by
the fact that v is usually small, and hence that % is quite small
as compared with A.

Let B be the breadth of the crosssection of the feeding
canal at the place where the readings of the hook are taken,
and let G be its depth below the crest (Fig. 32). The area of
that cross-section then is

A =BG+ H).

‘The mean velocity in this section now is
=4
v=

in which ¢’ is found from the formula
g =c§¥2g.bHL

This value of ¢ is an approximation to the actual discharge ;
from it v is found, and then £, after which the discharge ¢ can
be computed. If thought necessary, £ may be recomputed by
using ¢ instead of ¢’; but this will rarely be necessary.

For example, the small weir with end contractions used in
the hydraulic laboratory of Lehigh University has B = 7.82
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feet and G = 2.5 feet. The length of the weir & is adjustable
according to the quantity of water delivered by the stream.
On April 10, 1888, the value of & was 1.330 feet, and values of
H ranged from 0.429 to 0.388 feet. It is required to find the
velocity v and the velocity-head %, when A = 0.429 feet. Here
the coefficient ¢ is 0.602 (Art. 53), hence the approximate dis-
charge per second is

¢ = 0.602 X $ X 8.02 X 1.33 X 0.420t,
or ¢’ = 1.203 cubic feet per second.

The mean velocity of approach then is

v = GiFoars= 0.053 feet per second,

from which the velocity-head % is

— 0053" _
k= 6432 = o.oooo4.feet.

This is too small to be regarded, since the hook gauge used

determines the heads only to thousandths of a foot.

The velocity-head 2 may be directly expressed in terms of

the discharge by substituting for v its value i; thus:

Iz:o.orsss(%)'. B k7))

In general, this expression will be found the most convenient
one for computing the value of the head corresponding to the
velocity of approach.

With a weir opening of given size under a given head H,
the velocity of approach is less the greater the area of the sec-
tion of the feeding canal, and it is desirable in building a weir
to make this area large so that the velocity # may be small.
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For large weirs, and particularly for those without end con-
tractions, v is sometimes as large as one foot per second, giving
. =o0.0155 feet, and these should be regarded as the highest
values allowable if precision of measurement is required.

Prob. 69. FTELEY and STEARNS’ large suppressed weir had
the following dimensions: & = B = 18.996 feet, G = 6.55 feet,
and the greatest measured head was 1.6038 feet. Taking
¢ = 0.622, compute the velocity of approach and its velocity-
head.

ARTICLE 53. WEIRS WITH END CONTRACTIONS.

Let 4 be the breadth of the notch or length of the weir, &
the head above the crest measured by the hook gauge, and ¢
an experimental coefficient. Then if there be no velocity of
approach the discharge per second is

g=c.3V2g. 6HV . . . . . . . (33)

But if the mean velocity of approach at the section where the
hook is placed be v, let 2 be the head which would produce
this velocity. Then the discharge per second is

q::.%VZr.b(H‘ﬂ—lM)'. C e . (33)

The quantity A -+ 1.4/ is called the effective head on the crest,
and, as shown in the last article, % is usually small compared
with A,

The following table contains values of the coefficient of
discharge ¢ as deduced by HAMILTON SMITH, Jr.,* from a
discussion of the experiments made by LESBROS, FRANCIS,
FTELEY and STEARNS, and others. In these experiments ¢ is
determined by actual measurement in a vessel of large size, and
the other quantities being observed ¢ is computed. Values of
¢ for different lengths of weir and for different heads are thus

* Hydraulics (London and New York, 1884), p. 132.
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obtained, which being plotted enable mean curves to be drawn,
from which intermediate values are taken. The heads in the
first column are the effective heads A+ 1.4%; but as A is small,
little error can result in using /A as the argument with which to
enter the table in selecting a coefficient.

TABLE X. COEFFICIENTS FOR CONTRACTED WEIRS.

Effective Length of Weir in Feet.

Head

in Feet. 0.66 1 2 3 5 10 19
o.1 0.632 | 0.639 | 0.646 | 0.652 | 0.653 | 0.655 | 0.656
0.15 .619 .625 .634 .638 .640 .641 .642
0.2 611 .618 .626 .630 .631 .633 .634
0.25 . 605 612 .621 .624 .626 .628 .629
0.3 .6o1 .608 .616 .619 .621 .624 .625
0.4 .595% .601 .609 .613 .615 .618 .620
0.5 .590 .596 .605 .608 611 .615 .617
b .587 .593 .601 .605 .608 .613 | .615
0.7 .590 .598 .603 606 612 .614
0.8 .595 .600 .604 .611 .613 !
0.9 .592 .598 .603 .609 .612 !
1.0 .590 .595 .60t .608 .611 |
1.2 .585 .591 .597 .60s .610 '
1.4 .580 .587 .594 .602 .609 |
1.6 .582 .591 .600 .607 |

It is seen from the table that the coefficient increases with
the length of the weir, which is due to the influence of the end
contractions being independent of the length. The coefficient
also increases as the head on the crest diminishes. The table
also shows that the greatest variation in the coefficients occurs
under small heads, which are hence to be avoided in order to
secure accurate measurements of discharge.

Interpolation may be made in this table for heads and
lengths of weirs intermediate between the values given, regard-
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ing the coefficients as varying uniformly; but it will be better
in any actual case to diagram the coefficients on cross-section
paper, from which the interpolation can be made more easily
and accurately.

As an example of the use of the formula and table, let it be
required to find the discharge per second over a weir 4 feet
long when the head A is 0.457 feet, there being no velocity of
approach. From the table the coefficient of discharge is 0.614
for /= 0.4 and 0.6095 for A/ =o0.5, which gives about 0.612
when A =0.457. Then the discharge per second is

g=0.612 X § X 8.02 X 4 X 0.4571 = 4.04 cubic feet

If the width of the feeding canal be 7 feet, and its depth
below the crest be 1.5 feet, the velocity-head is

k= o0.0155 5(-124;-) = 0.00134 féet.

7 X 1.96

The effective head now.becomes
H + 1.4% = 0.459 feet,
and the discharge per second is
¢ =0.612 X § X 8.02 X 4 X 0.459! = 4.07 cubic feet.

It is to be observed that the reliability of these computed dis-
charges depends upon the precision of the observed quanti-
tics and upon the coefficient ¢; this is probably liable to an
error of one or two units in the third decimal place, which is
equivalent to a probable error of about three-tenths of one per
cent. On the whole, regarding the inaccuracies of observation,
a probable error of one per cent should at least be inferred, so
that the value ¢ = 4.07 cubic feet per second should strictly be
written,

g =4.07 £ 0.04;
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that is to say, the discharge per second has 4.07 cubic feet for
its most probable value, and it is as likely to be between the
values 4.03 and 4.11 as to be outside of those limits.

Prob. 70. Compute the discharges per second through a
weir whose length is 2.5 feet, width of feeding canal 6 feet,
depth below crest 1.6 feet when the heads on the crest are
0.314, 0.315, and 0.316 feet.

Prob. 71. Compute the coefficient of discharge for the fol-
lowing experiment by FRANCIS, in which ¢ was found by actual
measurement in a large tank: & = 9.997 feet, B = 13.96 feet,
G =4.19 feet, H = 1.5243 feet, 26 =64.3236 and ¢ = 61.282
cubic feet per second. Ans. ¢ =0.602.

ARTICLE 54. WEIRS WITHOUT END CONTRACTIONS.

For weirs without end contractions, or suppressed weirs,
when there is no velocity of approach, the discharge per second
is

q:c.}V@.bH‘; e v e e (34)

and when there is velocity of approach,

g=c¥Vag. . KH+ i . . .. G4

Here the notation is the same as in the last article, and ¢ is to
be taken from the following table, which gives the coefficients
of discharge as deduced by SMITH.

It is seen that the coefficients for suppressed weirs are
greater than for those with end contractions: this of course
should be the case, as contractions diminish the discharge.
They decrease with the length of the weir, while those for
contracted weirs increase with the length. Their greatest
variation occurs under low heads, where they rapidly increase
as the head diminishes. It should be observed that these
coefficients are not reliable for lengths of weirs under 4 feet,
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owing to the few experiments which have been made for
short weirs. Hence, for small quantities of water, weirs with

TABLE XI. COEFFICIENTS FOR SUPPRESSED WEIRS.

Effective | Length of Weir in Feet. l
Head !
F:;t. 19, 10 7 5 4 3 2
o.1 0.657 0.658 0,658 0.659
0.15 .643 644 645 645 0.647 0.649 0.652
0.2 .635 .637 .637 .638 .641 .642 .645
0.25 .630 .652 633 .634 636 .638 641
0.3 .626 .628 .629 .631 .633 .636 639
0.4 .621 623 .625 .628 .630 .633 .636
0.5 .619 .621 .624 .627 .630 .633 637
0.6 .618 .620 623 .627 630 634 .635
0.7 618 .620 .624 .628 .631 .635 .640
0.8 .618 .621 625 .629 633 .637 .643
0.9 .619 622 .627 631 .635 .639 .645
1.0 619 .624 .628 .633 637 .641 .648
1.2 .620 .626 .632 .636 .641 .646
1.4 .622 .629 .634 .640 .644

] 1.6 .623 .631 .637 .642 647

end contractions should be built in preference to suppressed
weirs. For a weir of infinite length it would be immaterial
whether end contractions existed or not; hence for such a
case the coefficients lie between the values for the 1g-foot
weir in Table X. and those for the 1g-foot weir in the table
here given.

For a numerical illustration the same data as in the ex-
ample of the last article will be used, namely, & = 4 feet,
G = 1.5 feet, and A = o0.457 feet. The coefficient from the



12 FLOW OF WATER OVER WEIRS. [CHaP. V.

table is 0.630: then for no velocity of approach the discharge
per second is

g = 0630 X § X 8.02 X 4 X 0457 = 4.16 cubic feet.

Here the width B would probably be also 4 feet; the head
corresponding to the velocity of approach then is

k = 0.0155 5(4 ;: 116.—5—6)’= 0.0044 feet,

and the effective head is
H + 134 = 0463 feet,
from which the discharge per second is
g = 0.630 X § X 8.02 X 4 X 0.4631 = 4.24 cubic feet.

This shows that the velocity of approach exerts a greater in-
fluence upon the discharge than in the case of a weir with end
contractions.

Prob. 72. Compute the discharge per second over a weir
without end contractions when &6 = 9.995 feet, A = 0.7955
feet, G = 4.6 feet. Ans. ¢ = 23.7 cubic feet per second.

ARTICLE 55. FRANCIS’ FORMULAS.

The formulas most extensively used for computing the
flow through weirs are those established by FRANCIS in 1854%
from.the discussion of his numerous and carefully conducted:
experiments, but as they are stated without tabular coeffici-
ents they are to be regarded as giving only mean approximate
results. The experiments were made on large weirs, most of
them 10 feet long, and with heads ranging from 0.4 to 1.6 feet,
so that the formulas apply particularly to such, rather than to
short weirs and low heads. The length 4 and the head A being

* Lowell Hydraulic Experiments (4th edition, New York, 1883). p. 133.
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expressed in feet, the discharge per second, when there is no
velocity of approach, is, for weirs without end contractions, or

suppressed weirs,
g=3330HY;, . . . . . . . (3%

and for weirs with end contractions,
g = 3.33(b—02ANHY . . . . . (36)

Here it is regarded that the effect of each end contraction is
to diminish the effective length of the weir by o.1.4.

FRANCIS' method of correcting for velocity of approach
differs from that of SMITH, and is the same as that explained
in Art. 25. The head % causing the velocity of approach is
computed in the usual way, and then the formulas are written,
for weirs without end contractions,

¢ = 3.330[(A + M—A]; . . . . (35)
and for weirs with end contractions,
q = 3.33(0—02H)(H + rp—H]. . . .- (36)

It is necessary that this method of introducing the velocity of
approach should be strictly observed, since the mean number
3.33 was deduced for this form of expression. ‘

It is seen that the number 3.33 isc.$ ¥2g, where ¢ is the
true coefficient of discharge. The 88 experiments from which
this mean value was deduced show that the coefficient 3.33
actually ranged from 3.30 to 3.36, so that by its use an error
of one per cent in the computed discharge may occur. When
such an error is of no importance the formula may be safely
used for weirs longer than 4 feet and heads greater than 0.4
feet.

Prob. 73. Find by FRANCIS' formulas the discharge when
B = 7 feet, b = 4 feet, H = 0.457 feet,and G = 1.5 feet, the
weir being one with end contractions.
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ARTICLE 56. SUBMERGED WEIRS.

When the water on the down-stream side of the weir is al-
lowed to rise higher than the level of the crest the weir is said
to be submerged. In such cases an entire change of condition
results, and the preceding formulas are inapplicable. Let A be
the head above the crest measured up stream from the weir by
" the hook gauge in the usual manner, and let A’ be the head
above the crest of the water down stream from the weir meas-
ured by a second hook gauge. If A be constant, the discharge
is uninfluenced until the lower water
rises to the level of the crest, provided
that free access of air is allowed be-
E neath the descending sheet of water.

But as soon as it rises slightly above
the crest so that A’ has small values,
the contraction is suppressed and the discharge hence increased.
As H’ increases, however, the discharge diminishes until it be-
comes zero when /' equals . Submerged weirs cannot be
relied upon to give precise ,measurements of discharge on
account of the lack of experimental knowledge regarding them,
and should hence always be avoided if possible.

The following method for estimating the discharge over
submerged weirs without end contractions is taken from the
discussion given by HERSCHEL * of the experiments made by
Francis and by FTELEY and STEARNS. The observed head A
is first multiplied by a number 7, which depends upon the
ratio of A’ to H, and then the discharge is to be found by the
formula

g = 3.336(nH0.

* Transactions American Society of Civil Engineers, 1885, vol. xiv. p. 194.
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The values of = are given in the following table:

TABLE XII. SUBMERGED WEIRS.

0.00 1.000 0.18 0.989 0.38 0.935 0.58 0.856
.01 1.004 .20 0.985 .40 0.929 .60 0.846
.02 1.006 .22 o.980 .42 0.922 .62 0.836
.04 1.007 .24 0.975 .44 0.915 .64 0.824
.06 1.007 .26 0.970 .46 0.908 .66 0.813
.08 1.006 .28 0.964 .48 0.900 .70 0.787 |
.10 1.005 .30 0.959 .50 0.892 .75 0.750 |
.12 1.002 .32 0.953 .52 0.884 .80 0.703
14 | 0.998 -34 0.947 .54 | 0.875 90 | 0.574
.16 0.994 .36 0.941 .56 0.866 1.00 0.000

The numbers in this table are liable to a probable error of
about one unit in the second decimal place when A’ is less than
0.2H, and to greater errors in the remainder of the table, those
values of 7 less than 0.70 being in particular uncertain. This
discussion shows that /' may be nearly one-fifth of A without
affecting the discharge more than two per cent.

A rational formula for the discharge over submerged weirs
may be deduced in the following manner. The theoretic dis-
charge may be regarded as composed of two portions, one
through the upper part # — A’, and the other through the
lower part //’. The portion through the upper part is given
by the usual weir formula, # — A’ being the head, or

Q =3} ¥2gb(H — H'M;

and that through the lower part is given by the formula for a
submerged orifice (Art. 42), in which & is the breadth, /7’ the
height, and /' — A’ the effective head, or

Q,=bH' ¥V2g(H — H').
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The addition of these gives the total theoretic discharge,
Q=4V2g0(H — H'W+ V2gbH'(H — H'}.
This may be put into the more convenient form,
Q=3 V2g b (H + $H\H — H'}.
The actual discharge per second may now be written,
¢ =c.Vag b(H+RHYH — HY;. . (37)
in which ¢ is the coefficient of discharge.

FTELEY and STEARNS adopt the above formula for the dis-
charge, or placing » for c.§ ¥'2¢, they write,*

g =mlH+YHY\H—-H)}, . . . (37)

and from their experiments deduce the following values of 7z :

For % =000 004 008 o012 016 o0.2 0.3
m=333 335 337 335 332 328 321
For g’— =0.4 0.5 06 o7 0.8 0.9 1.0

m=3.15 311 309 300 312 310 3.33

These are for suppressed weirs; for contracted weirs few or no
experiments are on record.

In what has thus far been said velocity of approach has not
been considered. This may be taken into account in the usual
way by determining the velocity-head 4, and thus correcting
H. In strictness the velocity of departure in the tail bay below

* Transactions American Society Civil Engineers, 1883, vol. xii. p. 103.
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the weir should be regarded, and its head 4’ be applied to A’
But it is unnecessary, on account of the limited use of sub-
merged weirs, and the consequent lack of experimental data, to
develop this branch of the subject. What has been given
above will enable a probable estimate to be made of the dis-
charge in cases where the water accidentally rises above the
crest, and further than this the use of submerged weirs cannot
be recommended.

Prob. 74. Compute by two methods the discharge over a
submerged weir when & = 8, H = 0.46, and A’ = 0.22 feet.

ARTICLE 57. ROUNDED AND WIDE CRESTS.

When the inner edge of the crest of a weir is rounded, as at
A in Fig. 34, the discharge is materially increased as in the case of
orifices (Art. 44), or rather the coefficients of discharge become
much larger than those given _—_ —
for the standard sharp crests. %%%
The degree of rounding influ- ’%\\\ R \\\\\".’,, /
ences so much the amount of A B  Z
increase that no definite values Fic. 34,
<an be stated, and the subject is here merely mentioned in order
to emphasize the fact that a rounded inner edge is always a
source of error. If the radius of the rounded edge is small,
the sheet of escaping water leaves it at a point below the top
{a in the figure), which has the practical effect of increasing the
measured head by a constant quantity. The experiments of
FTELEY and STEARNS show that when the radius is less than
one-half an inch, the discharge can be computed from the usual
weir formula, seven-tenths of the radius being first added to
the measured head A. ~

Two wide-crested weirs with square inner corners are shown
in Fig. 34, the one at B being of sufficient width so that the



118 FLOW OF WATER OVER WEIRS. [CHuaAP. V.

descending sheet may just touch the outer edge, causing the
flow to be more or less disturbed, while that at C has the sheet
adhering to the crest for some distance. In both cases the
crest contraction occurs, although water instead of air may fill
the space above the inner corner. For B the discharge may be
equal to or greater than that of the standard weir having the
same head A, depending upon whether the air has or has not
free access beneath the sheet in the space above thecrest. For
C the discharge is always less than that of the standard weir
with sharp crest.

The following table is an abstract from the results obtained
by FTELEY and STEARNS,* and gives the corrections in feet to
be subtracted from the depths on a wide crest, like C in Fig.
34, in order to obtain the depths on a standard sharp-crested
weir which will discharge an equal volume of water.

TABLE XIII. CORRECTIONS FOR WIDE CRESTS.

Head Width of crest in inches.
on wide

(l:"ree::. 3 4 6 8 10 12 ’ 24

0.05 | o.oro 0.009 0.009 0.009 0.009 0.009 | 0.009
.10 .016 .018 .017 .017 .017 .017 .017
.20 .012 .029 .031 .032 .033 .033 .034
.30 .030 .041 045 .047 .048 .050
.40 .022 .045 .055 .06o .062 .066
.50 .006 .041 .06o .069 .074 .082
.60 -031 .059 .075 .083 -097
.70 .017 .052 .075 .08g .112
.80 .000 .040 .071 .091 .128
.go ’ .027 .062 .089 .137

1.00 .0II .050 .082 .149

1.20 .021 .061 .168

1.40 .032 .180

* Transactions American Society Civil Engineers, 1883, vol. xii. g6.
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These results were obtained by passing a constant volume
of water over astandard weir and measuring the head /& on the
crest; a piece of timber was then brought into place on the
lower side of the crest and secured by fastenings, thus forming
the wide crest; and the head A being again measured, the in-
crease of depth was thus obtained. This being repeated for
different constant volumes the results were plotted and mean
curves drawn, from which the table was derived. The weir
used was without end contractions, and to such only the con-
clusions apply with precision. For weirs with end contractions
where the air has free access under the sheet at the ends the
discharge is probably different.

Prob. 75. Compute the discharge over a crest 1.5 feet wide
for a weir 10 feet long when the head is 0.850 feet, and show
that the discharge is about 19 per cent less than that over a
standard sharp-crested weir under the same head.

ARTICLE 58. WASTE WEIRS AND DaAMS.

Waste weirs are constructed at the sides of canals and
reservoirs in order to allow surplus water to escape. They are
usually made with wide crests, the inner approach to which is
inclined, and the discharge is received upon an apron of timber
or masonry. The flow over these wide-crested weirs is always

much less than for equal depths on standard weirs, and for
narrow crests the diminution may be approximately estimated
by the use of the table in the preceding article. When
the crest is about 3 feet wide, and level, with a rising slope
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to its inner edge, and the end contractions are suppressed,
the following formula, deduced by FRANCIS, may be applied,

g = 3.016H"%,

in which & and A are to be taken in feet, and ¢ is in cubic feet

per second.

In constructing a waste weir the discharge ¢ is generally
known or assumed, and it is required to determine & and A.
The latter being taken at 1, 2, or 3 feet, as may be judged safe
and proper, & is found by

=7
30148’

If, for exampl;:, ¢ be 87 cubic feet per second, and A be taken
as 2 feet, then

log & = log 87 — log 3.01 — 1.53log 2,
from which
log & = 1.0004,

whence 4 = 10.0 feet. If, however, A be taken as 1 foot, & is
required to be nearly 30 feet.

The ordinary weir formula may be also used for waste-weir
calculations with results differing but little from those obtained
by the above expression. Or using the approximate general
expression from Art. 55, '

q
b= )
3.33H14

In this, if ¢ be 87 cubic feet per second, and A be 2 feet, the
value of & is found to be g.24 feet. Evidently no great pre-
cision is needed in computing the length of a waste weir, since
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it is difficult to determine the exact discharge which is to pass
over it, and ample allowance must be made for unusual rains
or floods.

When a dam is built across a stream it is often important
to arrange its height so that
the water level may stand
at a certain elevation. In
Fig. 36 the line CC repre-
sents the surface of the
stream before the construc-
tion of the dam, the depth
of water being [, and it is
required to find the height
of the dam G, so that the
surface may be raised the
distance &’. If the crest be
not submerged, as in the first diagram,

G=D+d — H.

In this A is to be inserted in terms of the discharge g, or the
length & is to be determined as above for an assumed value of
H. For the former method,

G=D+w—&§ﬁ{

in which & may be width of the stream or less, as the design
requires. If G, D, ¢, and & be given, this formula may be used
to compute 4’.

If the height of the dam is small, as in the second diagram
of Fig. 36, the crest is submerged, and the last formula will not
apply. For this case

H=D+d' -G, H'=D—G;
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and inserting these heads in the formula (37)’, and solving for
G, the following result is found :

29
G:D ’——_..
T4 3mb¥d’

In this formula » lies between 3.09 and 3.37, depending on the
value of the ratio A/ + A, and accordingly a tentative method
of solution must be adopted. For example, let D = 4 feet,
d’ =1 foot, & = 50 feet, and ¢ = 400 cubic feet per second;
then, assuming » as 3.33,

G = 4 +067 — 1.6 = 3.1 feet.

Now H=4+1 — 3.1 = 1.9feet,and A’ = 4 — 3.1 =o0.9, so
that the ratio /'’ <+ H = 0.47, and hence from Art. 56 the
value of # is about 3.12. Using this, the value of G is mow
computed to be 2.96 feet, which gives A = 2.04 feet, and
H' = 1.04 feet, and H’' < H = 0.5, which ‘indicates that no
further variation in s will be found. Accordingly 2.96 feet is
the required height of the submerged dam.

Prob. 76. If 150 cubic feet per second flow over a waste
weir 20 feet long, find the depth of water on the crest.

Prob. 77. A stream 4 feet deep which delivers 150 cubic feet
per second is to be dammed so as to raise the water 6 feet
higher. Find the height of the dam when the length of the
overflow is 12 feet.

ARTICLE 59. THE SURFACE CURVE.

The surface of the water above a weir. assumes during the
flow a curve whose equation is not known, but some of the
laws which govern it may be deduced in the following manner:
Let A be the head above the level of the crest measured in
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perfectly level water at some distance back of the weir, and let
- : li)e th; .de{)reslsi(.m o}:’ dr;)p of fth(}tl curv.e
= elow this level in the plane of the weir
E‘*A (Fig. 37). The discharge per second ¢
=1 can be expressed in terms of A and 4 by
formula (11)" of Art. 25 by placing A for
4, and d for %,. This, multiplied by a

, FiG. 37. coefficient £, gives, if velocity of approach
be neglected, the formula

g=~Fk.4V2g. b(HIV - 4di).

This expression, it may be remarked, is the true weir formula,
and only the practical difficulties of measuring & prevent its
use.

From this formula the value of the drop & in the plane of -
the weir is found to be

37
di= HY— .
246 ¥V 2g

Let B be the breadth of the feeding canal, G its depth below
the crest, and v the mean velocity of approach ; then

¢ =BG+ H.

3 v

Py —=b
2k Vag >
its value /3, where % is the velocity-head corresponding to 7,
the formula becomes

di:Hc-nz%G+H)/z*,. C . (38)

Inserting this in the equation, replacing —- by #, and

which is an expression for the drop of the curve in terms of the
dimensions of the feeding canal and weir, and the heads A
and 4.
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The approximate value of the-coefficient 7 is about 2.2,
but precise values of & cannot be computed unless 7 and A
are known with accuracy. The formula, however, serves to
exemplify the laws which govern the drop of the curve in the
plane of the weir. It shows that the drop increases with the
head on the crest and with the length of a contracted weir, that
it decreases with the breadth and depth of the feeding canal,
and that it decreases with the velocity of approach. It also
shows for suppressed weirs, where B = §, that the drop is inde-
pendent of the length of the weir. All of these laws except
the last have been previously deduced by the discussion of
experiments.

Prob. 78. Discuss the above formula when A = 0; also
when /£ = o.

ARTICLE 60. TRIANGULAR AND TRAPEZOIDAL WEIRS.

Triangular rotches are used but little, as in general they are
only convenient when the quantity of water to be measured is
small. Such a notch when used as a weir must have sharp
inner corners, so that the stream may be fully contracted, and
the sides should have equal slopes. The angle at the lower
vertex should be a right angle, as this is the only case for which
coefficients are known with precision. The depth of water
above this lower vertex is to be measured by a hook gauge in
the usual manner at a point several feet up stream from the
notch.

In Art. 23 is deduced a formula for the theoretic discharge
through a triangular notch. Making the angle at the vertex a
right angle, and applying a coefficient, the actual discharge per
second is given by the expression

g=c.fV2g HY,
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in which A is the head of water above the vertex. Experi-
ments made by THOMSON* indicate that the coefficient ¢
varies less with the head than for ordinary weirs; this, in fact,
was anticipated, since the sections of the stream are similar in
a triangular notch for all values of A, and hence the influence
of the contractions in diminishing the discharge should be ap-
‘proximately the same. As the result of his experiments the’
mean value of ¢ for heads between 0.2 and 0.8 feet may be
taken as 0.592, and hence the mean discharge in cubic feet per
second through a right-angled triangular weir may be written

g = 2.54H4,
in which, as usual, A/ must be expressed in feet.

A trapezoidal weir has a similar advantage in rendering the
coefficients nearly constant.” The proportions recommended
by CIPPOLETTI are that the slope of the ends should be 1 to
4 whatever be the length of
the sill /, or that, in the figure,
2 =1}H. The reasoning from
which this conclusion is derived
is based upon FRANCIS' rule
(Art. 55), that each end contrac-
tion diminishes the discharge by a mean amount 3.33 X 0.1 X
A, or in general by the amount ¢ X § ¥2¢ X o.1 X AV If
the end be sloped, however, the discharge through the end tri-
angle having the base z and depth & is(Art. 23) ¢ X 4 ¥2¢ X
2 X F1..  If now the slope is just sufficient so that the extra
discharge balances the effect of the end contraction, these two
quantities are equal. Equating them, and supposing that ¢ has
the same value in each, there results z = }/. Hence in such
a trapezoidal weir the discharge should be the same as from

* British Association Report, 1858, p. 133.
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a suppressed rectangular weir of length /, or, according to
FRrANCIS, ¢ = 3.33/H3. CIPPOLETTI, however, concluded from
his experiments that the coefficient should be increased about
one per cent, and wrote

g = 3.367 / H}

as the formula for discharge when no velocity of approach.
exists.

Recent experiments by FLINN and DYER* indicate that the
coefficient 3.367 is probably a little too large. In 32 tests with
trapezoidal weirs of from 3 to g feet length on the crest and
under heads ranging from 0.2 to 1.4 feet, they found 28 to give
discharges less than the formula, the percentage of error
being over 3 per cent in eight cases. The four cases in which
the discharge was greater than that given by the formula show
a mean excess of about 3.5 per cent. The mean deficiency in
all the 32 cases was nearly 2 per cent. These experiments are
not very precise, since the actual discharge was computed by
measurements on a rectangular weir, so that the results are
necessarily affected by the errors of two sets of measurements,
as well as by leakage, which probably could not be wholly
accounted for. CIPPOLETTI’'S formula, given above, may hence
be allowed to stand as a fair one for general use with trapezoidal
weirs.¥ It can, of course, be written in the form

g=c.3V2glHY,
in which ¢ has the mean value 0.629.

If velocity of approach exists, /7 in this formula isto be re-
placed by A - 1.4/t where / is the head due to that velocity.
In order to do good work, however, Z should not exceed 0.004

* Transactions American Society of Civil Engineers, July, 1894, pp. 9-33. *
{ CiproLETTI, Canal Villoresi, 1887; see Engineering Record, Aug. 13, 1892.
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feet. Other precautions to be observed are that the cross-sec-
tion of the canal should be, at least, seven times that of the
water in the plane of the crest, and that the error in the
measured head should not be greater than one-third of one per
cent.

Prob. 79. For a head of 0.7862 feet on a CIPPOLETTI weir
of 4 feet length the actual discharge in 420 seconds was 3912.3
cubic feet. Compute the discharge by the formula and find
the percentage of error.
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CHAPTER VI
FLOW THROUGH TUBES.

ARTICLE 61. THE STANDARD SHORT TUBE.

A standard tube is a very short pipe, whose length is
about three times its diameter, or of sufficient length so that

the escaping jet just fills its outer end, }
and there issues without contraction. §\\]l

The inner end of the tube is placed flush :;§;;—i"_.———_—_:
with the inner side of the reservoir, and ////’/ =
. . i
isto be a sharp, definite corner, like that .,
of the standard orifice (Art. 34). Fic. 38.

The phenomena of flow through such a tube are similar in
some respects to those of the flow from the standard orifice,
but the discharge is much greater. By observations with glass
tubes it is found that the contraction of the jet occurs as in the
orifice, although agitation of the water or a shock upon the
tube is apt to apparently destroy it, and cause the entire length
to be filled. If, however, holes be bored in the tube near its
inner-end, water does not flow out, but air enters, showing that
a negative pressure exists.

Since the issuing jet entirely fills the outer end of the tube,
the coefficient of contraction for that section is unity (Art. 35),
and hence the coefficient of velocity equals the coefficient of
discharge (Art. 37). Numerous experiments by VENTURI,
BossuT, CASTEL, and others, give the following as a mean
value for the standard tube:

¢ = 0.82.
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This value, however, ranges from 0.83 for low heads and small
tubes to 0.80 for high heads and large tubes, its law of varia-
tion being probably the same as for orifices (Art. 38), although
experiments are wanting from which to state definite values in
the form of a table.

A standard orifice gives on the average about 61 per cent
of the theoretic discharge, but by the addition of a tube this
may be increased to 82 per cent. The effective energy of the
jet from the tube is, however, much less than that from the
orifice. For, let v be the velocity and %4 the head, then (Art.
36) for the orifice

v = 0.98 ¥'2¢4, whence % = 0.964;
and similarly for the tube,

v = 0.82 ¥2gk, whence 5%: = 0.67k.

Accordingly, the effective energy of the stream from the orifice
is g6 per cent of the theoretic A- *
energy, while that of the
stream from the tube is only
67 per cent. Or if jets be
directed vertically upward
from a standard orifice and a
standard tube, as in Fig. 39,
that from the former rises to »
the height 0.g64, while that ~— - ————
from the latter rises to the
height 0.67%, where % is the
head from the level of water 4B in the reservoir to the point
of exit.
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The standard tube is not used for the measurement of water,
as this can be done with greater precision and convenience by
orifices. It is important, however, to know the general laws of
flow which have here been set forth, as a starting point in the
theory of pipes, and for other purposes. The fact that the tube
gives a greater discharge than an orifice is an interesting one,
and the reason for this will be explained in Art. 67.

Prob. 80. Compare the effective horse-power of the streams
from a standard orifice and tube, the diameter of each being
4 inches and the head 25 feet.

ARTICLE 62. CONICAL CONVERGING TUBES.

Conical converging tubes are used when it is desired to
obtain a high efficiency in the energy of the stream of water.
At A is shown a simple con-
verging tube, consisting of a
===== frustum of a cone, and at B
is a similar frustum, provided
with a cylindrical tip. The
- - Fooe proportions of these converg-
ing tubes, or mouthpieces, vary somewhat in practice, but the
cylindrical tip when employed is of a length equal to about
24 times its inner diameter, while the conical part is eight or
ten times the length of that diameter, the angle at’the vertex
of the cone being between 10 and 20 degrees.

The stream from a conical converging tube like 4 suffers a
contraction at some distance beyond the end. The coefficient
of discharge is higher than that of the standard tube, being
generally between 0.85 and 0.95, while the coefficient of velocity
is higher still. Experiments made by D’AUBUISSON and CASTEL
on conical converging tubes 0.04 meters long and 0.0155 meters
in diameter at the small end, under a head of 3 meters, give
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the following results for the coefficients of discharge and
velocity, the former being determined by measuring the actual
discharge (Art. 37), and the latter by the range of the jet (Art.
36). The coefficient of contraction, as computed from these,
is given in the last column; and this applies to the jet at the
smallest section, some distance beyond the end of the tube.

TABLE XIV. COEFFICIENTS FOR CONICAL TUBES.

Angle of Cone. Discharge Velocity Contraction
c. €. ¢

0o° oo 0.829 0.829 ‘I.00

1 36 0.866 0.867

4 10 0.912 0.910

7 52 0.930 0.932 0.998
10 20 . 0.938 . 0.95I 0.986
13 24. 0.946 0.963 0.983
16 136 0.938 . 0.971 0.966
21 00 0.919 0.972 0.945
29 58 0.895 0.975% 0.918
48 50 0.847 0 984 0.861

‘While these values show that the greatest discharge occurred
for an angle of about 134 degrees, they also indicate that the
coefficient of velocity increases with the convergence of the
cone, becoming about equal to that of a standard orifice for
the last value. Hence the table seems to teach that a conical
frustum is not the best form for a mouthpiece to give the
greatest velocity.

Under very high heads—over 300 feet—SMITH found the
actual discharge to agree closely with the theoretical, or the
coefficient of discharge was nearly 1.0, and in some cases slightly
greater.®* His tubes were about 0.9 feet long, o.1 feet in

* SMITH'S Hy;drauiics, p. 286.
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diameter at the small end and 0.35 feet at the large end, the
angle of convergence being 17 degrees. As this implies a con-
traction of the jet beyond the end, it cannot be supposed that
the coefficient of discharge in any case was really as high as
his experiments indicate. Under these high heads the cylin-
drical tip applied to the end of a tube produced no effect on
the discharge, the jet passing through without touching its
surface.

Prob. 81. If the coefficient of discharge is 0.98 and the
coefficient of velocity 0.995, compute the coefficient of con-
traction.

ARTICLE 63. NOZZLES AND JETS,

For fire service two forms of nozzles are in use. The smooth
nozzle is essentially a conical tube like 4 in Fig. 40, the larger
end being attached to a hose, but it is
~ _~7= often, provided with a cylindrical tip

and sometimes the inner end is curved

as seen in the upper diagram of Fig. 41.

The ring nozzle is a conical tube having

an orifice whose diameter is slightly

smaller than that of the end of the tube.

The experiments of FREEMAN show
that the mean coefficient of discharge is about 0.97 for the
smooth nozzle and about 0.74 for the ring nozzle.* They also
seem to indicate that the simple cone has a higher discharge
than any form of curved nozzle.

The effective head at the entrance to a nozzle is the pres-
sure-head plus the velocity-head (Art. 27). Let D be the
diameter of the pipe or hose, & the diameter of the outlet end
of the nozzle, and 7 and v the corresponding velocities. Let

# FREeMAN, The I1ydraulics of Fire Streams. Transactions American Society
of Civil Engineers, 1889, vol. xxi, pp. 303-482.

FiG. 41.
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4, be the pressure-head at the entrance; then the effective head
at the entrance of the nozzle is

H=III+2K;3

and the velocity of discharge is v = ¢, ¥2¢H. Also VD' = vd",
since the same quantity of water per second passes the two
sections. From these two equations the values of Aand ¥ can
be expressed in terms of 7, and inserting them in the formula
and solving for v there is found

2 1
v=c,\/-———d,, B 1))
t—a(z)

forthe velocity of discharge from the nozzle. Here the last
term in the denominator shows the effect of the velocity of ap-
froach in the pipe; if ¢, = 1, it agrees with the theoretic ex-
pression deduced in Art. 25. In order to use this formula 4,
must be measured by a pressure-gauge at the entrance to the
nozzle; if this gives the pressure p, in pounds per square inch,
then %, = 2.304p, (Art. g9). For smooth nozzles where there
is no contraction of the stream after exit the coefficient of
velocity ¢, is equal to the coefficient of discharge c.

The effective head at the entrance to the nozzle may now
be written
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which gives 'the height to which the jet would rise if there
were no atmospheric resistances. The discharge is the product
of the area of the orifice and the velocity, or }7#d ‘v, and hence

9=6-299c,a"\/ ——/"——. v « « . (40)
()

I —¢'\—=

D

gives the discharge in cubic feet per second.

The experiments of FREEMAN furnish the following mean
values of the coefficient of discharge for smooth cone nozzles
of different diameters under pressure-heads ranging from 45 to
180 feet: A

Diameter = %, %, 1, 1, 14, 14 inches

Coefficient ¢ = 0.983, 0.982, 0.972, 0.976, 0.971, 0.959

These values were determined by measuring the pressure-
head £#,, and the discharge ¢, from which ¢, can then be com-
puted by (40), its value in this case being the same as .
For example, a nozzle whose diameter was 1.001 inches at the
orifice and 2.5 inches at the base discharged 208.5 gallons per
minute under a pressure of 50 pounds at the entrance ; here d =
1.001/12, D = 2.5/12, %, = 50 X 2.304, ¢ = 208.5 X 0.1337/60,
and inserting all quantities in (40) and solving for ¢, there is
found ¢, = 0.98s.

The vertical height of a jet from a nozzle is very much less,.
on account of the resistance of the air, than the value given by
(39)’. For instance, let a smooth nozzle one inch in diameter
attached to a 2.5-inch hose have ¢, =0.97 and the pressure-
head /%, = 230 feet ; then (39)' gives £ = 221 feet, whereas the
average of the highest drops in still air will be about 152 feet
high and the main body of water will be several feet lower.
The following table, compiled from the results of FREEMAN'S
experiments, shows for three different smooth nozzles, the

.
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TABLE XV. VERTICAL JETS FROM SMOOTH NOZZLES.

Indicated From 3%4-inch Nozzle, From 1-inch Nozzle. From 1}-inch Nozzle.
Pressure at
::é%%fi t Height in Fccl.: cheze. Height in Feet. chlzli':e. Height in Feet.' chl‘):;-c_
Square ———— Gallons || Gallons [ Gallons
Inch. A B MIPI:\‘;I.G. A B Mll:lel:te. A B Mt‘::l:te.
i

10 20 17 l 52 21 18 93 22 19 | 148

20 40 33 73 43 35 132 44 37 209

30 59 48 90 63 51 161 66 53 256

40 78 60 104 83 64 186 86 67 296

50 93 67 116 101 73 208 | 107 77 331

60 104 72 127 117 79 228 126 8s 363

70 Iy 76 137 130 8s 246 140 91 392

8o 123 79 147 140 89 263 | 150 95 419

%o |19 81 156 147 92 279 | 157 99 444

100 134 83 164 152 96 295 161 101 4638

height of vertical jets, column A giving the heights reached by
the average of the highest drops in still air, and column B the
maximum limits of height as a good effective fire-stream with
moderate wind. The discharges given depend only on the
pressure, and are the same for horizontal as for vertical jets.

In ring nozzles the ring which contracts the entrance is
usually only 4 or } inch in width. The effect of this is to
diminish the discharge, but the stream is sometimes thrown to
a slightly greater height. On the whole, ring nozzles seem to
have no advantage over smooth ones for fire purposes. As
the stream contracts after leaving the nozzle, the coefficient of
velocity ¢, is greater than the coefficient of dischargec. The
value of ¢ being about 0.74, that of ¢, is probably a little larger
than 0.97 in the contracted section.

According to FREEMAN’S experiments, the discharge of a
g-inch ring nozzle is the same as that of a §-inch smooth
nozzle, while the discharge of a 1}-inch ring nozzle is about 20
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per cent greater than that of a 1-inch smooth nozzle. The
heights of vertical jets from a 1{-inch ring nozzle are about
the same as those from a 1-inch smooth nozzle, while the jets
from a t§-inch ring nozzle are slightly less in height than those
from a 1}-inch smooth nozzle.

The maximum horizontal distance to which a jet can be
thrown is also a measure of the efficiency of a nozzle. The
following, taken from FREEMAN’S tables, gives the horizontal
distances at the level of the nozzle reached by the average of
the extreme drops in still air:

Pressure at nozzle entrance, 20 40 60 8o 100 pounds.
From §-inch smooth nozzle, 72 112 136 153 167 feet.
From 1-inch smooth nozzle, 77 133 167 189 205 feet.
From 1}-inch smooth nozzle, 83 148 186 213 236 feet,
From i1{-inch ring nozzle, 76 131 164 186 2032 feet.
From 1}-inch ring nozzle, 78 138 172 196 215 feet.
From 1§-inch ring nozzle, 79 144 180 206 227 feet.

The practical horizontal distances for an effective fire-stream is,
however, only about one-half of these figures.

The question as to the best form of curve for a nozzle, in
order that the velocity may be a maximum, has often been
discussed. In reality, however, no one curve has any advan-
tage over others, for a high efficiency of the jet is secured only
through avoiding the losses of energy.

Prob. 82. A nozzle 1§ inches indiameter attached to a play-
pipe 2% inches in diameter discharges 310.6 gallons per minute
under an indicated pressure of 30 pounds per square inch.
Find the effective head at the end of the nozzle and the co-
efficient of velocity.

Prob. 83. Find from the table the heights of vertical jets
for a §-inch and a 1}-inch nozzle, and the discharges in gallons
per minute, when the indicated pressure at the entrance is 7§
pounds per square inch.
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ARTICLE 64. DIVERGING AND COMPOUND TUBES.

In Fig. 42 is shown a diverging conical tube BC, and two
compound tubes. The compound tube ABC consists of two
cones, the converging one, 4B, being much shorter than the
diverging one, BC, so that the
shape roughly approximates to
the form of the contracted jet
which issues from an orifice in
a thin plate. In the tube AE —
the curved converging part AB %
closely imitates the contracted ——
jet, and BB is a short cylinder
in which all the filaments of
the stream are supposed to
move in lines parallel to the
axis of the tube, the remaining
part being a frustum of a cone. The converging part of a
compound tube is often called a mouthpiece, and the diverging
part an adjutage.

Fi1G. 42.

Many experiments with these tubes have shown the interest-
ing and phenomenal fact that the discharge and the velocity
through the smallest section, B, are greater than those due to the
head; or, in other words, that the coefficients of discharge and
velocity are greater than unity. One of the first to notice this
was BERNOULLI in 1738, who found ¢ = 1.08 for a diverging
tube. VENTURI in 1791 experimented on such tubes, and
showed that the angle of the diverging part, as also its length,
greatly influenced the discharge. He concluded that ¢ would
have a maximum value of 1.46 when the length of the diverg-
ing part was g times its least diameter, the angle at the vertex
of the cone being 5° 06’. EYTELWEIN found ¢ = 1.18 fora
diverging tube like BC in Fig. 42, but when it was used as an
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adjutage to a mouthpiece, 45, thus forming a compound tube
ABC, he found ¢ = 1.55.

The experiments of FRANCIS in 1854 on a compound tube
like ABCDE are very interesting.* The curve of the converg-
ing part A8 was a cycloid, BB was a cylinder, and the diameters
at A4, B, etc., were

A = 1.4 feet,
B = 0.1018,

C = 0.1454,
D = 0.2339,

E = 0.3209

The piece BB was o.1 feet long, and the others each 1 foot ;
these were made to screw together, so that experiments could
be made on different lengths. A sixth piece, £F, not shown
in the figure, was also used, which was a prolongation of the
diverging cone, its largest diameter being 0.4085 feet. The
tubes were of cast-iron, and quite smooth. The flow was
measured with the tubes submerged, and the effective head
varied from about 0.01 to 1.5 feet. Excluding heads less than
o.1 feet, the following shows the range in value of the coefhi-
cients of discharge :

For tube AB. 0.80t00.94  0.80t0 0.94
For tube AC, 1.43 to 1.59 0.70 to 0.78
For tube AD, 1.98 to 2.16 0.37 to 0.41
For tube AE, 2.08 to 2.43 0.21 t0 0.24
For tube AF, 2.05 to 2.42 0.13 to 0.15

¢ for Section BB,

¢ for Outer End.

The maximum discharge was thus found to occur with the
tube AE, and to be 2.43 times the theoretic discharge. In
general the coefficients increased with the heads, the value 2.08
being for a head of o0.13 feet and 2.43 for a head of 1.36 feet,
under 1.39 feet, however, ¢ was found to be 2.26.

The value of £ at Lowell, Mass., where these experiments

* Lowell Hydraulic Experiments, 4th Edition, pp. 209-232.
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were made, is about 32.162 feet per second. Hence under a
head of 1.36 feet the theoretic velocity is

¥2gh = 8.0202 ¥'1.36 = 9.36 feet per second,
while the actual velocity in the section BB was
v = 2.43 X 9.36 = 22.74 feet per second.

The velocity-head corresponding to this is

s _—
2z (2.43)'% = 5.90%.

Therefore the flow through the section BB was that due to a
head 5.9 times greater than the actual head of 1.36 feet; or, in
other words, the energy.of the water flowing in BB was 5.9
times the theoretic energy. Here, apparently, is a striking
contradiction of the fundamental law of the conservation of
energy.

Under high heads the velocity becomes so great that the
jet does not touch the sides of the diverging tube, or adjutage,
and hence the actual may not exceed the theoretic discharge.
It is probable, however, that if the tube be long and its taper
very slight an increased discharge can be obtained under
a high head.

The explanation of the phenomena of increased velocity
and discharge caused by these tubes is simple. It is due to
the occurrence of a partial vacuum near the inner end of the
adjutage BC. The pressure of the atmosphere on the water
in the reservoir thus increases the hydrostatic pressure due to
the head, and the increased flow results. The energy at the
smallest section is accordingly higher than the theoretic
energy, but the excess of this above that due to the head must
be expended in overcoming the atmospheric pressure on the
outer end of the tube, so that in no case does the available ex-
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ceed the theoretic energy. No contradiction of the law of
conservation therefore exists.

To render this explanation more definite, let the extreme
case be considered where a complete vacuum exists near the
inner end of the adjutage, if that were possible, as it perhaps
might be with a tube of a certain form. Let % be the head of
water in feet on the centre of the smallest section. The mean
atmospheric pressure on the water in the reservoir is equivalent
to a head of 34 feet (Art. 4). Hence the total head which
causes the discharge into the vacuum is %4 -4 34 and the

velocity of flow is nearly 42¢(%# + 34). Neglecting the re-
sistances, which are very slight if the entrance be curved, the
coefficients of velocity and discharge can now be found; thus:

For £ =100, v =¥2¢ X 134 = 1.16 ¥2gk;
Fork= 10, v=4#2gX 44 = 2.10¥2gh;
Fork= 1, v=42¢gX 35 =5092V2g4
The coefficient hence increases as the head decreases. That
this is not the case in the above experiments is undoubtedly
due to the fact that the vacuum was only partial, and that the
degree of rarefaction varied with the velocity. The cause of the
vacuum, in fact, is to be attributed to the velocity of the

stream, which by friction removes a part of the air from the
inner end of the adjutage. - ]

It follows from this explanation that the phenomena of in-
creased discharge from a compound tube could not be pro-
duced in the absence of air. The experiment has been tried
on a small scale under the receiver of an air-pump, and it was
found that the actual flow through the narrow section dimin-
ished the more complete the rarefaction. Italso follows that it is
useless to state any value as representing, even approximately,
the coefficient of discharge for such tubes. To secure the high- -
est coefficients, it is thought that the form of the adjutage of
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the compound tube should not be conical, but of the shape de-
duced for the perfect nozzle in Art. 63. - The converging part
should also properly be of the

same form. Then the stream N
both in contracting and in ex- — -
panding follows the law of —
the perfect jet; and hence it Fi. 4.

may be supposed that the least loss of energy will result, and
consequently the greatest flow. This, however, is a mere
hypothesis, not yet confirmed by experiment.

Prob. 84. Compute the pressure per square inch in the
section BB of FRANCIS' tube when £ = 1.36 feet and ¢ = 2.43.
What is the height of the column CD (Fig. 19, Art. 27) that
could be lifted by a small pipe inserted at 55?

ARTICLE 65. INWARD PROJECTING TUBES.

Inward projecting tubes, as a rule, give a less discharge
than those whose ends are flush with the sides of the reser-
voir, due to the greater convergence of the lines of direction
of the filaments of water. At 4 and B are shown inward pro-
jecting tubes so short that the water merely touches their inner
edges, and hence they may more properly be called orifices.
Experiment shows that the case at 4, where the sides of the
tube are normal to the side

of the reservoir, gives the == J\\‘[;;/ \(4/\ L:t:mi—:
minimum coefficient of dis- Kvy —j)ﬂ“ B ;}Mf:(h
charge ¢ = o.5, while for B

‘the value lies between 0.5 *_"'\{"{,/ — =3\ ’//
and that for the standard — :T _____};\E_:;_: \\ 1 — =
orifice at €. The inward W\llo /:',I“‘\E k/
projecting cylindrical tube il

at D has been found to give FiG. 44.

a discharge of about 72 per cent of the theoretic discharge,
while the standard tube (Art. 61) gives 82 per cent. For the
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tubes £ and F the coefficients depend upon the amount of
inward projection, and they are much larger than o.72 for
both cases, when computed for the area of the smaller end.

It is usually more convenient to allow a water-main to pro-
ject inward into the reservoir than to arrange it with its mouth
flush to a vertical side. The case D, in Fig. 44, is therefore of
practical importance in considering the entrance of water into
the main. As the end of such a main has a flange, forming a
partial bell-shaped mouth, the value of ¢ is probably higher
than 0.72. The usual value taken is 0.82, or the same as for
the standard tube (Art. 61). Practically, as will be seen in a
later article, it makes little difference which of these is used,
as the velocity in such a pipe is slow and thé resistance at the
mouth is very small compared with the frictional resistances
along its length.

Prob. 85. Find the coefficient of discharge for a tube whose
diameter is one inch, when the flow under a head of g feet is
22.1 cubic feet in 3 minutes and 30 seconds.

ARTICLE 66. EFFECTIVE HEAD AND LosT HEAD.

The terms energy and head are often used as equivalent,
although really energy is proportional to head. Thus, if 4 be
the head on an orifice or tube, % the velocity head of the issu-

ing jet, and W the weight of water discharged per second, the

theoretic energy per second is W4, the effective or actual en-
3

,’
ergy is W;::; and the lost energy is W (/z — %) . It is more

convenient to deal directly with the heads, omitting the W:

thus the effective head in this case is ;% , and the lost head is
PR
28
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If no losses occur due to friction, contraction, or other
causes, the effective head at any point of a tube or pipe is
equal to the hydrostatic head 4. This effective head may be
exerted either in producing pressure or in producing velocity,
or part of it in pressure and part in velocity. Thus, as shown
in Art. 27,

h=ht o

where %, is the pressure-head at the place considered. If
there be no motion of the water % equals /4,, and if the flow is

‘ : 7
so rapid that there be no pressure £ equals YL Owing to the

. . ' . v,
various resistances, however, the effective head /%, 4 55 is gen-
4

erally less than the total head 4, and the difference is called the
lost head. Thus, at any section of a tube or pipe the head
which has been lost is

B = h— ’_”),

& (/“+_2g B '3 )
At the end of the tube, or rather outside of the tube, there
can be no pressure on the jet, and the loss of head in the flow

of the jet hence is
/a

hzh-if' v e e e . (a1)
Thus in Art. 46 it was shown that for the standard orifice
the loss of energy or head is about 4 per cent, and in Art. 61 it
was shown that for the standard tube the loss is about 33
per cent.

In any case the loss of head in a jet from a tube or orifice
depends merely on the loss of velocity. Let ¢, be the coeffi-
cient of velocity : then for a small orifice or tube

v=a¥2g#,
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and the effective velécity-head is
s

— =%

28

Consequently the loss of head is

, 7

k =Iz—-2?=(l—c,’)h. o v o. (42)
It is sometimes more convenient especially for pipes to express
this loss in terms of the velocity-head. The value of £in terms
of this is

p=1Z
¢’ 2g

and hence the loss of head is

/z'=(—I;—I)%, N )

f.
in which » is the actual velocity of discharge.

For the standard tube (Fig. 38, Art. 61) the coefficient of
velocity is equal to the coefficient of discharge whose mean
value is 0.82. The effective head of the jet then is

2 '
w (0.82)'% = 0.674,

and the loss of head is

K= (1—067)t =o0.334

or '
r= (L o\ Lm0y

¥ = (0.67 l) 28 049 2g "’
Hence the loss of head may be said to be either 33 per cent
of the total head or 49 per cent of the effective velocity-head ;
that is, the lost energy is about one-third of the total energy
or about one-half of the effective energy.
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In reality, work or energy is never lost, but is merely trans.
formed into other forms of energy. In the tube the one-third
of the total energy which has been called lost is only lost"
because it cannot be utilized as work ; it is, in fact, transformed
into heat, which raises the temperature of the water. And so
it is in all cases of lost head: the pressure-head plus the
velocity head is the effective head which can alone be rendered
useful; if this be less than the total hydrostatic head, the
. remainder has disappeared in heat.

Prob. 86. Show that the lost head is nearly equal to the
effective head for an inward projecting cylindrical tube.

ARTICLE 67. LOSSES IN THE STANDARD TUBE.

The loss of head in the flow from the short cylindrical ‘tube ,
is large, but not so large as might be expected from theoretical
considerations based on the known coefficients for orifices.
If the tube has a length of only two diameters the jet does
not touch its inner surface, and the flow occurs as from a
standard orifice. The velocity in the plane of the inner end
is then 61 per cent of the theoretic velocity, since the mean
coefficient of discharge is 0.61. Now if the tube be increased
in length about one diameter its outer end is filled by the jet,
and since the contraction still exists, it might be inferred that
the coefficient for that end would be also 0.61: this would
give an effective head of (0.61)'% or 0.37%, so that the loss of
head would be 0.634. Actually, however, the coefficient is
found to be 0.82 and the loss of head only 0.33% It hence
appears that further explanation is needed to account for the
increased discharge and energy.

It is to be presumed, in the first place, that a loss of about
0.044 occurs at the inner end of the tube in the same manner
as in the standard orifice, due to retardation of the outer fila-
ments (Art. 46). The effective head at the contracted section
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in the tube is then about 0.96%. If the coefficient of contrac-
tion have the value 0.62, as in the orifice, the velocity in that
section is greater than at the end of the tube, and, since the
velocities are inversely as the areas of the sections, that velo-
city is
0.82
v, = oo V2gh = 132 ¥2gh,

which is nearly one-third larger than the theoretic velocity.
The velocity-head at that section then is

7'
'2? - 1'7559

and consequently the pressure-head is
k, = 0.96k — 1.75% = — 0.79%.

There exists therefore a negative pressure or partial vacuum
in the tube which is sufficient to lift a columin of water to a
height of about three-fourths the head.
S This conclusion has been confirmed by
experiment for low heads, and was in
1 ;}r_—_ fact first discovered experimentally by
—t=—=—=—o=— VENTURL For high heads it is not
- valid, since in no event can atmospheric
-—_=_ pressure raise a column of water higher
_____ than about 34 feet (Art. 4); probably
- = =] under high heads the coefficient of con-
—==d== traction of the jet in the tube becomes
Fic. 4s. much greater than 0.62.

The reason of the increased discharge of the tube over the
orifice is hence due to the negative pressure or partial vacuum,
which causes a portion of the atmospheric head of 34 feet to
be added to the head 4, so that the flow at the contracted
section occurs as if under the head % < #4,, as in the diverging
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" tube (Art.64). The occurrence of the partial vacuum is attrib-
uted to the friction of the sides of the jet on the air. When
the flow begins, the jet is surrounded by air of the normal
atmospheric pressure which is imprisoned as the jet fills the
tube. The friction of the moving water carries some of this
air out with it, thus rarefying the remaining air. This rarefac-
tion, or negative pressure, is followed by an increased velocity
of flow, and the process continues until the air around the con-
tracted section is so rarefied that no more is removed, and the
flow then remains permanent, giving the results ascertained by
experiment. The experiments of BUFF have proved that in
an almost complete vacuum the discharge of the tube is but
little greater than that of the orifice.*

The velocity-head in the contracted section of the jet is thus
about 1.75/%, but of this 0.79%Z must be expended in overcom-
ing the atmospheric pressure at the end of the tube, so that
the effective head is only 0.96/4. If the retarding influence of
the outer end be 0,044, or the same as that of the inner end,
the effective head is reduced to 0.924, while the actual effect-
ive velocity-head is 0.674. Thus a further loss of 0.25% is to
be accounted for, and this must be supposed to be due to the
enlargement of the-section of the jet, and the consequent dimi-
nution of velocity, whereby the energy is converted into heat.
The partial vacuum causes neither a gain nor loss of head, and
the only losses are 0.04% at the inner end of the tube, 0.25%
in the enlargement of the jet, and 0.04% at the outer end, or
in all 0.33%4  These quantities, of course, are only approxi-
mate, as they depend upon the mean coefficients 0.98, 0.62,
and 0.82, all of which are liable to variation.

Prob. 87. Discuss the losses of head in an inward projecting
tube, taking ¢’ = 0.6 and ¢ = o.7.

* See RUHLMANN'S Hydromechanik (Hannover, 187q).
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ARTICLE 68. LOSS DUE TO ENLARGEMENT OF SECTIOHN.

When a tube or pipe is kept constantly full of water a loss--
of head is found to result when the section is enlarged so that
the velocity is diminished. Let
v, and 7, be the velocities in the
smaller and larger sections, and
k&, and #%, the corresponding pres-
sure-heads. The effective head
in the first section is the sum of
the pressure- and velocity-heads.
— (Arts. 27 and 66), or

v ]
F1G. 46, Il; + ‘2_;,'9
and the effective head in the second section is
7,
h!+ zg-.'

If no losses occur, these two expressions are equal; but as the
second effective head is always smaller than the first, their dif-
ference is the loss of head between the two sections, or the
lost head 4’ is

R ZJ,' - 7’:

A = 2z (f—h). . . . . @a3)
This is a general expression, which gives the loss of head due
not only to enlargement, but to all resistances between any two.
sections of a horizontal tube or pipe. If the difference 4, — Z,
of the pressure columns shown in Fig. 46 is measured, and the
velocities determined, the loss of head is thus found in any
particular case.

The loss of head due to the sudden enlargement of section,
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or rather to the sudden diminution of velocity caused by the
enlargement, can be expressed by the for-
I =S
. —_\,___
in AB and p, that in CD. At a section N D
MM very near the place of enlargement Fia. 47.
the unit pressure is also g, , since the velocity v, is maintained
for a short distance after leaving AB, its direction, however,
being changed so as to form eddies. Let 4, be the area of
the section CD or MN. Then the pressure which acts in the
opposite direction to the flow is a,(p, —2,), and this is the
force which causes the velocity to diminish from 7, to v, Now
in Art. 32 it was shown that the force which causes ¥ pounds

. . . . W
of water to increase in velocity from o to v is —, and con-
g

versely the same force applied in the opposite direction will
cause the velocity to diminish from 2 too. Therefore the
value of the pressure a,(p, — p,) is

as()! fl) - ——(7/ - 'I},) wa?l (:_ _7/,) ’

where w is the weight of a cubic unit of water. This expres-
sion may be written,

or (Art. g) ky— k&, =

This value of %, — %, inserted in the general equation (43)
reduces it to

vl_vi’

N
k= 2g"""'(44)
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which is the formula for loss of head due to sudden enlarge-
ment. The loss of energy in this case is similar to that which
occurs in the impact of inelastic bodies, work being converted
into heat.

Let a, and a, be the areas of the cross-sections AB and CD.
Then v, = Z—'-'u, , and the formula for loss of head.in sudden en-

largement becomes

PGB

which is often a more convenient form for practical use. If
a, = a, or if v,= 0 no loss of head resuits.

If a gradual enlargement of section be made so that no im-
pact occurs, the energy due to the velocity , is slowly changed
into pressure, so that head is not lost. There is, however, no
distinct line of division between sudden and gradual enlarge-
ment, and for a case like Fig. 46 experiment can alone deter-
mine the value of %, — %, and the loss of head. In the last
article it was seen that about 0.254% is lost in the expansion of
the jet between the contracted section and the end of the tube.
This seems like a case of gradual enlargement, but as no pres-
sure can exist at the end of the tube the loss of head must
be the same as for sudden enlargement of section; in fact

v, = 1.32 ¥2g% and v, = 0.82 ¥2¢h, whence by the above
formula 2 = 0.25%.

The loss of head due to sudden enlargement may often be
very great, as the following example will show. Let the effec-
tive head in the section AB be £, all of which exists as velocity,

so that v, = ¥2g%; let the diameter of 48 be 2 inches, and
that of CD be 4 inches, so that the area at CD is four times
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that at 45, and hence the velocity in CDis v, = } ¥2gh. The
loss of head then is

(‘U‘ _ ‘”l)’

[ ot Sl )

A= Y 4,

so that more than half the energy of the water in AB is lost in
shock or impact. At CD the effective head is then %4, of
which {4/ is velocity-head and %% is pressure-head. Sudden

enlargement of section is therefore to be avoided.

Prob. 88. In a horizontal tube like Fig. 46 the diameters are
6 inches and 12 inches, and the heights of the pressure-columns
or piezometers are 12.16 feet and 12.96 feet above the same
bench mark. Find the loss of head between the two sections
when the discharge is 1.57 cubic feet per second, and also when
it is 4.71 cubic feet per second.

ARTICLE 69. Loss DUE TO CONTRACTION OF SECTION.

When a sudden contraction of section in the direction of
the flow occurs, as in Fig. 48, the water suffers a contraction
similar to that in the standard tube, and hence in its expansion
to fill the smaller section a loss of head
results. Let 7, be the velocity in the
larger section and v that in the smaller,
while 2/ is the velocity in the contracted
section of the flowing stream; and let a,,
a, and a’ be the corresponding areas of
the cross-sections. From the formula ﬁ*/v—f_\
(44) of the last article the loss of head =r——¢==r"
due to the expansion of section from o’
toais

)

)/
|

|

Fi1G. ¢8.

a 1 I e
h’=(7— l) -2—‘=(—,— 1) —; ... (48)
74 ¢ 28
in which ¢ is the coefficient of contraction or the ratio of &’
to a.
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The value of ¢’ depends upon the ratio between the areas
a and a,. When a is small compared with «,, the value of ¢’
may be taken at 0.62 as for orifices (Art. 35). When a is
equal to a, there is no contraction or expansion of the stream,
and ¢ is unity. Let d and 4, be the diameters corresponding
to the areas a and ,, and let 7 be the ratio of & to &,. Then
experiments seem to indicate that an expression of the form

=mtir—s
gives the law of variation of ¢ with ». Determining the values
of m and z from the two limiting conditions above stated,

there is found,
o. 041 8
-7’

¢ = 0582+

from which approximate values of ¢’ can be computed. The
manner of the variation in the values of ¢ is indicated by the
following tabulation :

Forr =00, 0.2, 04, 06, 0.7, 08, o049, 1.0
¢ =062, 0.63, 064, 067, 069, 0.72, 0.79, 1.00.

from which intermediate values may often be taken without
the necessity of using the formula.

For a case of gradual contraction of section, such as shown
in Fig. 49, the loss of head is less than that given by the above
formula, and can only be de-
termined for a given velocity of
flow by observing the difference
of the heights of the pressure
columns. The loss of head then
is

LOTTITT

K== b=,
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as proved in Art. 68. This may be written

a’ 7,
¥=Cim )% b -
1f the change of section be made so that the stream has no
subsequent enlargement, loss of head is avoided, for, as the
above discussions show, it is the loss in velocity due to sudden
expansion which causes the loss of head.

The loss due to sudden contraction of a tube or pipe is
usually much smaller than that due to sudden enlarge-
ment. For instance, if the diameter of the larger section
be three times that of the smaller, and the velocity in the
large section be 2 feet per second, the loss of head when the
flow passes from the smaller to the larger section is

W= (18 —2)*

27 = 4.0 feet.

But if the flow takes place in the opposite direction the co-
efficient ¢/ is about 0.64, and the loss of head is

A )'_33_
i '—(0.64 1 zg—l.6 feet,

which may be made to vanish by rounding the edges where
the change of section occurs.

Prob. 89. Compute the loss of head when a pipe which dis-
charges 1.57 cubic feet per second suddenly diminishes in sec-
tion from 12 to 6 inches diameter.

ARTICLE 70. PIEZOMETERS.

A piezometer is an instrument for measuring the pressure
which exists in a pipe. In its simplest form it consists merely
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of a glass tube, as at 4, in which the water rises to a height £4,.
L At B is a form where the tube
I connectimg with the pipe is of
metal, which is jeined by a flexi-
h * ble hose with a glass tube, which
c may be placed alongside of a
———,—— graduated rod to read the height
. .. At C is a common pressure
Fic. 4. gauge whose dial is graduated so
asto read either heights or pressures, as may be desired. When
&, is found by measurement, the pressure per square unit is
computed from the relation 2, = wh (Art. 9). In order to
secure accurate results with piezometers, it is necessary that
they be inserted into the pipe exactly at right angles; if in-
clined with or against the current, the height %, is greater or
less than that due to the actual pressure at the mouth.

If no loss of head occurs between the reservoir and the
place where the piezometer is inserted the velocity and dis-
charge through the pipe may be determined. The flow being
stopped, the water in the piezometer rises to the height %, at
the same level as the surface level of the reservoir; when the
flow occurs it stands at the height 4,. Then

vi

It, - /t, + Q’
whence

v=V2g(lh,— %), . . . . . (46)
and hence the discharge is known for a pipe of given size. It
is only in cases of low velocities, however, that this method of
gauging the flow is at all applicable, owing to the losses of
head which always exist.

The question as to the point from which the pressure-head
should be measured deserves consideration. In the figures of
the preceding articles %, and %, have been estimated upward
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from the centre of the tube, and it is now to be shown that
this is probably correct. Let Fig. 50 represent a cross-section
of a tube to which are attached three piezome-
ters as shown. If there be no velocity in the
tube or pipe, the water surface stands at the
same level in each piezometer, and the mean
pressure-head is certainly the distance of that
level above the centre of the cross-section. If
the water in the pipe be in motion, probably
the same would hold true. Referring to formula (43) of Art.
68, and to Fig. 46, it is also seen that if there be no velocity
k =k, — k,, which cannot be true unless %, — %, = o, since
there can be no loss of head in the transmission of static pres-
sures; hence %, and 4, cannot be measured from the top of the
section, In any event, since the piezometer heights represent
the mean pressures, it appears that they should be reckoned
upward from the centre of the section. The absolute values
of %, and %, are not generally required, the difference %, — %,
being alone used in computations ; nevertheless the above con-
siderations are not unimportant.’

F1G. so.

The principal application of the piezometer is to the meas-
urement of losses of head, as indicated in Art. 68 for the case
of horizontal pipes. The same method applies to inclined

pipes, only here the piezom- , -8
eter readings are usually e

taken above an assumed pdbe--—"" H
datum MM, as shown .in ~—_ by U lL
Fig. 51. Let 4, and q, be& : ?/—\

the areas of any two sec- T~ " i
tions of a pipe, 7, and 7, the ) s \i’:
velocities, A, and A, the !
heights of the piezometers .t _.._______ 3 N
above a datum MV, and £, Fic. st.

and %, the heights above the axis of the pipes, that is, the mean
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pressure-heads. When no flow occurs the piezometers stand

in the same level line 4B8. When the flow takes place, deliv.
)

ering W pounds of water per second, the effective energy in

the ﬁrst_ section is
v’
W(k' + 2?)'

and that in the second section is

W(/;,+’2’T';).

Now let z be the vertical distance of the centre of the second
section below the first. Were it not for losses the energy in
the second section would be

(lz+ )-{—Wz

Therefore the energy lost in heat due to friction, enlargement,
contraction, and all other causes, between the two sections, is
Y —h — =
W (b + 2 + s : g)
or the loss of head is
, ot —1r
k =T+Ill+3—h..
But from the figure it is seen that
/l,-l—l—}l,:Hl—]{,.
Hence the loss of head between the two sections is
2 — 7,

B H =, )

or the same as shown in Art. 68 for horizontal tubes, the pie-
zometer elevations being referred to the same datum.

==

If the pipe be of the same diameter at the two sections the
velocities 7, and v, are equal, and the loss of head is

=H -H, . .. . . . (4

which is merely the difference of level of the water surfaces
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in the piezometers. If the two sections are at the same eleva-
tion, or if the second section is lower than the first, this loss is
entirely due to resistances which convert the energy into heat.
When, however, the second section is higher than the first by
the distance &, the head # is lost in overcoming the force of
gravity, and the remainder %#'—g’ is the portion lost in heat.
Piezometers therefore furnish a very convenient method of de-
termining lost head in pipes of uniform section. For pipes of
varying section they are rarely applied, as the discharge per
second must be measured to find the velocities v, and v,.

In practice it is usually the case that the piezometric tube
is simply tapped into the top of the pipe whose flow is to be
investigated. It is thought, however, that this may not give
the mean pressure throughout the section. In the equations
above deduced v, and 7, are the mean velocities in the two
sections and 4, and £, the corresponding mean pressure-heads.
In order that the piezometer may correctly indicate these
mean pressure-heads, they should perhaps be connected with
the pipe at the sides and bottom as well as at the top. Pie-
zometric measurements are hence liable to give results more or
less uncertain.

If a tube be inserted obliquely to the direction of the cur-
rent it no longer indicates the true pressure-head, for it is
found that the height of the water is greater when the mouth
of the tube is inclined toward the current than when inclined
away from it. Let 6
be the angle between
the direction of the 1
flow and the inserted
tube. Then the dy-
namic pressure in the
direction of the flow Fic. 52.
is proportional to the velocity-head, and the component of

°
TTITITITITN

!

Y
|
|
'é
I
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this in the direction of the tube tends to increase the normal
pressure-height %, when 6 is less than go° and to decrease it
when 6 is greater than go°. Thus

,v!
h,:lz,-{——z}cosﬂ

may be written as approximately applicable to the two cases.
In this, if the tube be inserted normal to the pipe, § = go°and
%, becomes %,, the height due to the static pressure in the
pipe: if v = o, the angle 6 has no effect upon the piezometer
readings. This discussion indicates that when the velocity v
is great, piezometric measurements may be affected with errors
if the connection be not made truly normal to the direction of
the flow.

Prob. go. In one of the experiments on the compound tube
shown in Fig. 53 the areas of the sections @, and a, were
57.823 square feet, while that-of 2, was 7.047 square feet.
When the discharge was 54.02 cubic feet per second the pie-
zometric elevations were:

H, = 99.838, H, = 98.921, H, = 99.736 feet.

Show that the head lost was 0.017 feet between @, and «,, and
0.085 feet between a, and a, .

ARTICLE 71. THE VENTURT WATER METER.

It has been shown by HERSCHEL¥* that a compound tube
provided with piezometers may be used for the accurate
measurement of water. The apparatus, which is called by him
the VENTURI Water Meter, is shown in outline in Fig. 53, and
consists of a compound tube (Art. 64) terminated by cylinders,
into the top of which are tapped the piezometers A, and H,
Surrounding the small section 4, is a chamber into which four

* Transactions American Society of Civil Engineers, 1887, vol. xvii. p. 228.
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or more holes lead from the top, bottom, and sides of the tube,
and from which rises the piezometer A,. The flow passing
through the tube has the velocities v, , 7,, and 7, at the sections
a,, a,, and a,, and these velocities are inversely as the areas of
the sections (Art. 19). When the pressure in g, is positive the

I
-2
1

i

F

J l 4 DATUM PLANE

FiG. s53.

water stands in the central piezometer at a height Z,, as shown .
in the figure; when the pressure is negative the air is rarefied,
and a column of water lifted to the height %4,. If £ is the
height of the top of the section a, above the datum the value
of H, for the case of negative pressure was taken to be £ — £,.
The apparatus was constructed so that the areas ¢, and ¢, were
equal, while 4, was about one-ninth of these.

To determine the discharge per second through the tube,
the areas ¢, and g, are to be accurately found by measure-
ments of the diameters; then

Q = alvl ? or Q = aivi .
If no losses of head occur between the sections ¢, and g, the
quantity Z’ in the formula of the last article is 0, and

2, — ;]

O=T+H‘_H.
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Inserting in this for v, and v, their values in terms of Q, and
then solving for @, gives the result
aa
e —
Q Vala — a’t zg(Hl H;)’

which may be called the theoretic discharge. Dividing this
expression by &, gives the velocity v,, and dividing it by a,
gives the velocity #,. Owing to the losses of head which
actually exist, this expression is to be multiplied by a coeffi-
cient ¢; thus:

9=c. == VHE=H) . . . 43)

Va: —a,

is the formula for the actual discharge per second.

Reference is made to HERSCHEL'S paper, above quoted, for
a full description of the method of conducting the experi-
ments. The discharge was actually measured either in a large
tank or by a weir; and thus ¢ being known for observed pie-
zometer heights A, and A, the value of ¢ was computed by
dividing the actual by the theoretic discharge. For example,
the smaller tube used had the areas

a, = 0.77288, a, = 0.08634 square feet;
hence the theoretic discharge is
Q =0.086884 y24(H, — H,),
and the coefficient of discharge or velocity is
q

c=3g-
In experiment No. 1 the value of A, was 99.069, while %, was
24.509 feet, and the actual discharge was 4.29 cubic feet per
second. As E was 84.704, the value of A, is 60.195 feet. The
theoretic discharge then is

Q = 0.086884 X 8.02 ¥'38.874 = 4.345.
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Dividing 4.29 by this, gives for ¢ the value 0.988. Fifty-five
experiments made in this manner, in all of which negative
pressure existed in a,, gave coefficients ranging in value from
0.94 to 1.04, only four being greater than 1.01 and only two
less than 0.96.

The larger tube used had the areas 2, = 57.823 and
a, = 7.074 square feet, and the pressure at the central piezom-
eter was both positive and negative. Twenty-eight experi-
ments give coefficients ranging from 0.95 to 0.99, the highest
coefficients being for the lowest velocities. In this tube the
velocity at the section a, ranged from § to 34.5 feet per second.
The small variation in the coefficients for the large range in
velocity indicates that the apparatus may in the future take a
high rank as an accurate instrument for the measurement of
water. Under low velocities, however, it is not probable that
the arrangement of piezometers shown in Fig. 53 will give the
best results; in order that A, may correctly indicate the mean
pressure in a,, connection seems to be required both at the
bottom and sides of the tube like that at a,. It is thought,
moreover, that the elevation £ should be measured to the
centre of the section rather than to the top. The lower pie-
zometer H, is not an essential part of the apparatus and may
be omitted, although it was of value in the experiments as show-
ing the total loss of head.

Prob. g1. Given a, = 7.074 and a, = 57.823 square feet,
k, = 12.204, E = go.909, and H, = ¢8.773 feet, to compute
the coefficient of discharge when ¢ = 243.87 cubic feet.
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CHAPTER VIIL
FLOW THROUGH PIPES.

ARTICLE 72. FUNDAMENTAL IDEAS.

The simplest case of flow through a pipe is that where the
discharge occurs entirely at the end, there filling the entire sec-
tion, as in a tube; such pipes are said to be in a condition of
full flow. Other cases are those where the discharge is drawn
from the pipe at several points along its length, as in the water
mains for the supply of towns. Pipes with full flow will be
first considered, but most of the principles and tables relating
to them apply with but slight modification to water mains.
Pipes used in engineering practice are rarely less than § inch
in interior diameter, and may range from this value upward to
4 feet or more.

The phenomena in a pipe with full flow are apparently sim-
ple. The water from the reservoir, as it enters the pipe, suffers
more or less contraction, depend-
E=— ing upon the manner of connec-

1 = tion, as in tubes. Its velocity is
H /,t/ ﬁg S then retarded by the resistances
" —~— of friction and cohesion along the

-'_:==r_,// interior surface, so that the dis-

Fi. s4. charge at the end is much smaller
than in the tube. When the flow becomes permanent the pipe
is entirely filled throughout its length; and hence the mean
velocity at any section is the same as that at the end, if the
size be uniform. This velocity is found to decrease as the
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length of the pipe increases, other things being equal, and be-
comes very small for great lengths, which shows that nearly all
the head has been lost in overcoming the resistances.

The head which causes the flow is the difference in level
from the surface of the water in the reservoir to the centre of
the end, when the discharge occurs freely into the air. If £ be
this head, and W the weight of water discharged per second,
the theoretic energy per second is Wk ; and if v be the actual

velocity of ‘discharge the effective energy is %Vg—’(_f- The lost

energy is then W(/t - %), and this has disappeared in heat in

overcoming the resistances. In other words, the total head is
k]
4, the effective head of the outflowing stream is 21;; , and the

lost head is %2 — %; If the lower end of the pipe is sub-

merged, as is often the case, the head /% is the difference in
-elevation between the two water levels.

The length of a pipe is measured along its axis, following all
its windings if any. When the length is about two and one-
half diameters the pipe is a tube whose coefficient of discharge
varies from 0.71 to 0.82, according to the arrangement of its
inner end (Art. 65). As the length increases the coefficient of
discharge becomes less than from the tube, and for long pipes
it becomes very small indeed—indicating that the greater part
of the head % is expended in heat in overcoming resistances.

The object of the discussion of flow in pipes is to enable the
discharge which will occur under given conditions to be deter-
mined, or to ascertain the proper size which a pipe should
have in order to deliver a given discharge. The subject can-
not, however, be developed with the definiteness which char-
acterizes the flow from orifices and weirs, partly because the
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condition of the interior surface of the pipe greatly modifies
the discharge, partly because of the lack of experimental data,
and partly on account of defective theoretical knowledge re-
garding the laws of flow. In orifices and weirs errors of two
or three per cent may be regarded as large with careful work ;
in pipes such errors are common, and are generally exceeded
in most practical investigations. It fortunately happens, how-
ever, that in most cases of the design of systems of pipes errors
of five and ten per cent are not important, although they are
of course to be avoided if possible, or, if not avoided, they
should occur on the side of safety.

Prob. g2. A pipe 500 feet long and 3 inches in diameter dis-
charges about 48 gallons per minute under a head of 4 feet.
Compute the coefficient of discharge.

ARTICLE 73. LosS OF HEAD AT ENTRANCE.

The loss of head which occurs in the upper end of the pipe,
due to contraction and resistance of the inner edges, is called
the loss at entrance, and this is the same as in a short cylin-
drical tube under the same velocity of flow. Let ¢ be the
coefficient of velocity or discharge for a short tube and » the
mean velocity at its outer end, then (Art. 66) the loss of head
in the tube is

r=(5-1)Z

A= ( a1 Py
Now this velocity # is the same as that in the pipe into which:
the tube may be regarded as discharging, and hence this same
expression is the loss of head which occurs at the entrance of

the pipe, or rather it is the loss at the upper end in a length
equal to about three diameters.

The discussions of the last chapter show that the mean
value of ¢ is about 0.72 when the tube projects into the reser-
voir, about 0.82 when the inner end is flush with side of the
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reservoir and has square corners, and that it may be nearly 1.00
when the inner end is provided with a bell-shaped mouth.
Accordingly the loss of head for a pipe projecting into the

reservoir is
oy )”’ _:
¥ = (0.72’ 2¢ 0933
and for a pipe whose end is arranged like a standa.rd tube,
= (- )2 = ’i
¥ = .82* 2g 049 ;
and for a pipe with a perfect mouthpiece,
K = (1-,— 1)2’_ =0
1 2g
The loss of head at entrance is hence always less than the
velocity-head, and it may be expressed by the formula

vl

H=m 52_ e« e e e e e (49)

in which 2 is 0.93 for the inward projecting pipe, 0.49 for the
standard end, and o for a perfect mouthpiece. When the con-
dition of the end is not specified the value used for  in the
following pages will be 0.5, which supposes that the arrange-
ment is like the standard tube or nearly so. For short pipes,
however, it may be necessary to consider the particular condi-
tion of the end, and then

m=(:—,—x), B 1))

in which ¢ is to be selected from the evidence presented in the
last chapter.

It should be noted that the loss of head at entrance is very
small for long pipes. . For example it is proved by actual
gaugings that a pipe 10000 feet long and 1 foot in diameter
discharges about 4% cubic feet per second under a head of 100
feet. The mean velocity then is

_ 4325
~ 0.7854

= 5.41 feet per second,
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and the probable loss of head at entrance hence is
/' = 0.5 X 0.01555 X 5.41' = 0.228 feet,

or only one-fourth of one per cent of the total head. In this
case the effective velocity-head of the issuing stream is only
0.455 feet, which shows that the total loss of head is 99.545
feet.

Prob. 93. Under a head of 20 feet a pipe 1 inch in diameter
and 100 feet long discharges 15 gallons per minute. Compute
the loss of head at entrance.

ARTICLE 74. Loss oF HEAD IN FRICTION.

The loss of head due to the resisting friction of the interior
surface of a pipe is usually large, and in long pipes it becomes
very great, so that the discharge is but a small percentage of
that due to the head. Let % be the total head on a pipe with

full flow, :ig the velocity-head of the issuing stream, 4’ the head

lost at entrance, and 42" the head lost in frictional resistances.
Then if the pipe be straight and of uniform size, so that no
other losses occur,

7}. ’ 7
Inserting for #’ its value from Art. 73, this equation becomes
p=2 ()2,
which is a fundamental formula for the discussion of flow in
pipes.
The head lost in friction may be determined for particular
cases by measuring the head /4, the area a of the cross-section

of the pipe, and the discharge per second ¢. Then ¢ divided
by a gives the mean velocity v, and from the above equation

1 7

=Il-—‘j'2z_>
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which serves to compute Z”, the value of ¢ being first selected
according to the condition of the end. This method is not
applicable to very short pipes because of the uncertainty
regarding the coefficient ¢ (Art. 65).

Another method, and the one most generally employed, is
by the use of piezometers (Art. 70). A portion of the pipe
being selected which is free from sharp curves, two vertical
tubes are inserted into which the water rises. The differ-
ence of level of the water surfaces in the piezometers is then
the head lost in the pipe between them, and this loss is caused
by friction alone if the pipe be straight and of uniform size.

By these methods many experiments have been made upon
pipes of different sizes and lengths under different velocities of
flow, and the discussion of these has enabled the approximate
laws to be deduced which govern the loss of head in friction,
and tables to be prepared for practical use. These laws are:

1. The loss in friction is proportional to the length of the
pipe.

2. It increases nearly as the square of the velocity.

3. It decreases as the diameter of the pipe increases.

4. It increases with the roughness of the interior surface.

5. It is independent of the pressure of the water.

These laws may be expressed by the equation

w_ sl
h—Z’Q’ e« v v o o (50)

in which /is the length of the pipe, & its diameter, and fis a
quantity which depends upon the degree of roughness of the
surface. This equation is an empirical one merely ; the theo-
retic expression for %2 is as yet unknown, and it is probable
_ that when discovered it will prove to be of a complex nature.

The values of 4" having been deduced for a number of
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cases in the manner just explained, the corresponding values
of f can be computed. In this manner it is found that f varies
not only with the roughness of the interior surface of the pipe,
but also with its diameter, and with the velocity of flow. From
the discussions of FANNING, SMITH, and others, the following
table of mean values of / has been compiled, which are appli-
cable to clean iron pipes, either smooth or coated with coal-
tar varnish, and laid with close joints.

TABLE XVI. FRICTION FACTORS FOR PIPES.

Diameter Velocity in Feet per Second.
in

Feet. , 1. 2. 3. 4. 6. 10, 15.
0.05 0.047 | 0.041 | 0.037 | 0.034 | 0.031 | 0.029 | 0.028
0.1 .038 .032 .030 .028 .026 .024 .023
0.25 .032 .028 .026 .025 .024 .022 .021
0.5 .028 .026 .025 .023 .022 .020 .019
0.7% .026 .025 .024 .022 .021 .019 .018
I. .025 .024 .023 .022 .020 .018 .017
1.2§ .024 .023 .022 .021 .019 .017 .016
1.5 .023 .022 .021 .020 .018 .016 .0I5
I.75 .022 .021 .020 .018 .017 .015 .014
2. .021 .020 .0Ig .017 .016 .0I4 .013
2.5 .020 .019 .018 .016 .0I§ .0I3 .012
3. .0I9 .018 .016 .0I5 .014 .013 .012
3.5 .018 .017 .016 .014 .013 .012
4. .017 .016 .01§ .0I3 .012 |. .o1I
5. .016 0I5 .014 .013 .012
6. .0I5 .014 .0I3 .012 .0IX

The quantity f may be called the friction factor, and the
table shows that its value ranges from 0.05 to 0.01 for new
clean pipes. A rough mean value, often used in approximate
computations, is _

Friction factor f = 0.02.
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It is seen that the tabular values of f decrease both when the
diameter and when the velocity increases, and that they vary
most rapidly for small pipes and low velocities. The probable
error of a tabular value of f is liable to be about one unit in
the third decimal place, which is equivalent to an uncertainty
of ten per cent when f = o.011, and to five per cent when
f=o0.021. The effect of this is to render computed values of
/' liable to the same uncertainties; but the effect upon com-
puted velocities and discharges is much less, as will be seen
in Art. 76.

To determine, therefore, the probable loss of head in fric-
tion, the velocity z must be known, and fis taken from the
table for the given diameter of pipes. The formula

— sl 7
T7d 2
then gives the probable loss of head in friction. For example,
let / = 10000 feet, d =1 foot, v = 5.41 feet. Then, from the
table, f is 0.021, and

/A’ = 0021 X 12000 X 0.455 = g6 feet,
which is to be regarded as an approximate value, liable to an
uncertainty of five per cent.

h/l

The theory of the internal frictional resistances, as far as
understood, indicates that the energy which is thus transformed
into heat is expended in two ways: first, in the direct friction
along the interior surface ; and second, in impact caused by an
unsteady motion of the particles of water. Under very low
velocities the motion is in lines parallel to the axis of the pipe,
so that resistance is met only along the surface, but under ordi-
nary conditions the motion of many of the particles is sinuous,
whereby irternal friction or impact is also produced. Experi-
ments devised by REYNOLDS enable this sinuous motion to be
actually seen, so that its existence is beyond question.
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Prob. g4. Determine the actual loss of head in friction from
the following experiment: / = 60 feet, £ = 8.33 feet, d =
0.0878 feet, ¢ = 0.03224 cubic feet per second, and ¢ = 0.8.
Compute by help of the table the probable loss for the same
data. ‘

ARTICLE 75. OTHER LOSSES OF HEAD.

Thus far the pipe has been supposed to be straight and o
uniform size, so that no losses of head occur except at en-
trance and in friction. But if the pipe vary in diameter, or
have sharp curves, or contain valves, further losses occur, which
are now to be considered.

Sudden enlargements and contractions of section cause
losses of head which may be ascertained by the rules of Arts.
68 and 69. These are of infrequent occurrence in pipes, the
usual method of passing from one size to another being by
means of a “reducer,” which is a conical frustum several feet
long, whereby the velocity is slowly changed without expend-
ing energy in impact.

The loss of head caused by easy curves is very slight, and
need not be taken into account. For sharp curves the loss is
small, rarely exceeding twice the velocity-head for a single
curve, but when many such curves occur the item of loss thus
caused may be important. According to the investigations of
WEISBACH, the loss of head due to a curve of one-fourth of a
circle may be written

in which 7 is a number whose value is given below for different
d .
values of 3R where R is the radius of the curve of the centre
line of the pipe, and 4 is its diameter :
3 _
® = OI, 02, 03, 04, 0.5, 06, o7, 0.8, 09, IO

n = 0.13, 0.14, 0.16, 0.21, 0.29, 0.44, 0.66, 0.98, 1.41, 1.98
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These coefficients, however, were derived for small pipes, and
it is probable that for large pipes the loss of head may be less
than they indicate.

In Fig. 55 are shown three kinds of valves for regulating
the flow in pipes: at A4 a valve consisting of a vertical sliding-
gate, at B a cock-valve formed by two rotating segments, and

at C a throttle-valve or circular disk which moves like a damper
in a stove-pipe. The loss of head due to these may be very
large when they are sufficiently closed so as to cause a sudden
change in velocity. It may be expressed by

in which # has the following values, as determined by the ex-
periments of WEISBACH.* For the sluice-valve let 4’ be the
vertical distance that the gate is lowered below the top of the
pipe; then

’

Fel=o ¢+ + %+ 4+ % 1 1%
n=00 007 026 08I 2.1 5.5 17 98

For the cock-valve let 6 be the angle through which it is
turned, as shown in the figure; then

(-] ]

20

For§ =0° 10 30° 40° 50° 55° 60° 65°

n=0 029 1.6 55 17 53 106 200 486

* Mechanics of Engineering, vol. i., CoxE’s translation, p. go2.
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In like manner, for the throttle-valve the coefficients are:

50° 60° 65° 70°

o \Y

20° 30

(] o

For0 = 5° 10 40

n=024 052 15 39 II 33 118 256 750

The number 7 hence rapidly increases and becomes infinity
when the valve is fully closed, but as the velocity is then zero
there is no loss of head. The velocity v here, as in other
cases, refers to that in the main part of the pipe, and not to
that in the contracted section formed by the valve.

An accidental obstruction in a pipe may be regarded as
causing a sudden change of section, and the loss of head due

to it is, by Art. 68,

(G L,
a/

where a is the area of the section of the pipe, and 2’ that of

the diminished section. This formula shows that when 4’ is

one-half of 4, the loss of head is equal to the velocity-head,

and that # rapidly increases as @’ diminishes.

In the following pages the symbol £/ will be used to
denote the sum of all the losses of head due to curvature,
valves, and contractions of section. Then

h,,,:”'z/_’,. S (1

28

in which 7z will denote the sum of all the coefficients due to
these causes. In case no mention is made regarding these
sources of loss they are supposed not to exist, so that both »
and %"’ are simply zero.

Prob. 95. Compute for the data of the last problem the
loss of head caused by a semi-circular curve whose radius is 2
inches.



ART. 76.] FORMULA FOR VELOCITY. 173

ARTICLE 76. FORMULA FOR VELOCITY.
The mean velocity in a pipe can now be deduced for the
condition of full flow. The total head being %, and the effec-

tive velocity-head of the issuing stream being {é , the lost head

. 2 . .
isk — 2% and this must be equal to the sum of its parts, or

v’ 4 17 14
k_EE_]z+k +A27 . . o0 .. (52)
Substituting in this the values of #/, 2”, and %’ from the pre-

ceding articles, it becomes
7 7 /7 7 ,
hmg =gt agtryg - - 62

and by solving for v there is found

v= Zg/tl ,.....(53)
I+m+fo+n

which is a general formula for the velocity of flow.

In this formula #z will be taken as 0, unless otherwise stated ;
that is, no losses of head occur except at entrance and in fric-
tion. The formula for pipes which are essentially straight and
of uniform size throughout then is

/4
v = 2gi—7.. e e e e (53)’
Ls+/

Here m is taken as 0.5, which is to be regarded as its mean
value in accordance with the discussion in Art. 73.

In this formula the friction factor fis a function of v to be
taken from the table in Art. 74, and hence v cannot be directly
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computed, but must be obtained by successive approximations.
For example, let it be required to compute the velocity of dis-
charge from a pipe 3000 feet long and 6 inches in diameter
under a head of g feet. Here / = 3000, 4 =0.5, and 2 =9;
taking for f/ the rough mean value 0.02, the formula gives

\/ 2X 3216 X 9 )
v = = 2.2,
1.5 4+ 0.02 X 3000 X 2

The approximate velocity is hence 2.2 feet per second, and
entering the table with this, the value of f is found to be 0.026.
Then the formula gives

_ 2X 3216 X9 _
v= 1.5 + 0026 X 3000 X 2 1.92.

This is to be regarded as the probable value of the velocity,
since the table gives f = 0.026 for v = 1.92. In this manner
by one or two trials the value of v can be computed so as to
agree with the corresponding value of /.

The error in the computed velocity due to an error of one
unit in the last decimal of the factor f is always relatively less
than the error in fitself. For instance, if v be computed for
the above example with / = 0.025, its value is found to be 1.g6
feet per second, or two per cent greater than 1.92. In general,
the percentage of error in v is less than one-half of that in A
It hence appears that computed velocities are liable to probable
errors ranging from one to five per cent, owing to imperfections
in the tabular values of f, for new clean pipes. This uncer-
tainty is as a rule still further increased by various causes, so
that five per cent is to be regarded as a common probable error
in computations of velocity and discharge from pipes.

Velocities greater than 15 feet per second are very unusual
in pipes, and but little is known as to the values of f for such
cases. For velocities less than one foot per second, the values
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of f are also not understood, so that little reliance can be placed
upon computations. The usual velocity in water mains is less
than five feet per second, it being found inadvisable to allow
swifter flow on account of the great loss of head in friction.

To illustrate the use of the general formula, let the pipe in
the above example be supposed to have a curve of 6 inches
radius, and to contain a gate valve which is half closed. Then
from Art. 75, # = 0.29 for the curve and » = 2.1 for the valve,
or in the formula # is to be put as 2.39. The velocity is now
found to be

_ 2X 3216 X9 _ .
‘= \/3-89 + 0.026 X 6000 1.90 feet per second;

which is but a trifle less than that found before. The closing
of the sluice gate to one-half its depth hence but slightly in-
fluences the velocity, while the effect of the curve is scarcely
perceptible. ‘With a shorter pipe, however, the influence of
these would be more marked.

Prob. g6. Compute the velocity for the data of the last
example if the pipe be 1000 feet long.

Prob. g7. Compute the velocity for a pipe 15000 feet long
and 18 inches in diameter under a head of 230 feet.

Ans. g.57 feet per second.

ARTICLE 77. COMPUTATION OF DISCHARGE.

The discharge per second from a pipe of given diameter is
found by multiplying the velocity of discharge by the area of
the cross-section of the pipe, or

g=1}%md'v=07854d%, . . . . . (54)
in which v is to be found by the method of the last article.

For example, let it be required to find the discharge in
gallons per minute from a clean pipe 3 inches in diameter and
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500 feet long under a head of 4 feet. Here d = 0.25, / = 500,
and £ =4. Then for f = 0.02, the velocity is found to be 2.5
feet per second ; again taking from the table _'f=o.027, the
velocity is 2.15 feet per second. The discharge in cubic feet
per second is

g = 0.7854 X 0.25" X 2.15 = 0.106;
and in gallons per minute, )
g = 0.106 X 7.48 X 60 = 47.6.

This is the probable result, which is liable to the same uncer-
tainty as the velocity—say about three per cent: so that strictly
the discharge should be written 47.6 4 1.4 gallons.

By inserting the value of v in the above expression for 'q it
becomes

p— / 20h i . :
1t+m+fy+n

and from this the value of the head required to produce a
given discharge is

k= %(I-{-m—{-—f‘é—{-n)%’,.

These formulas are not more convenient for practical computa-
tions than the separate expressions for v, ¢, and % previously
established, since in any event v must be computed in order to
select f from the table. They serve, however, to exhibit the
general laws which govern the discharge.

Prob. ¢8. Compute the probable discharge from a pipe 1
inch in diameter and 1000 feet long under a head of 40 feet.

Prob. g9. What head is required to discharge 3 gallons per

minute through a pipe 1 inch in diameter and 1000 feet long ?
Ans. 11.3 feet.
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ARTICLE 78. COMPUTATION OF DIAMETER.

It is an important practical problem to determine the
diameter of a pipe to discharge a given quantity of water
under a given head and length. The last equation above
serves to solve this case, as all the quantities in it except &
are known. This may be written in the form

& =[atmyndtr1]}2

pymrA
or placing for » and 2¢ their mean values and neglecting 7, it
becomes

d=0479[(x.5d+f1)%]*, N (1))

which is the formula for computing & when 4, /, and 4 are in
feet and ¢ is in cubic feet per second. The value of the fric-
tion factor f may be taken as 0.02 in the first instance, and the
d in the right-hand member being neglected, an approximate
value of the diameter is computed. The velocity is next
found by the formula

g
v = de, »
and from Table XVI. the value of f thereto corresponding is
selected. The computation for & is then repeated, placing in
the right-hand member the approximate value of 4. Thus
by one or two trials the diameter is computed which will
satisfy the given conditions.

For example, let it be required to determine the diameter
of a pipe which, under the condition of full flow, will deliver
500 gallons per second, its length being- 4500 feet and the
head 24 feet. Here the value of ¢ is

500

g= 7481 = 66.84 cubic feet.
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The approximate value of & then is

0.02 X 4500 X 66.84" '
d= o.479( 4524 —é)* = 3.35 feet.
From this the velocity of flow is
66.84

Y= B X 335 7.6 feet per second,

and from the table the value of f for this diameter and velocity
is found to be c.013. Then

66.84" T
d =0479 [(1.5 X 3.35 + 0.013 X 4500) 244] .

from which & = 3.125 feet. With this value of & the velocity
is now found to be 8.71 feet, so that no change results in the
value of f. The required diameter of the pipe is therefore
3.1 feet, or about 37 inches; but as the regular market sizes of
pipes furnish only 36 inches and 40 inches, one of these must
be used, and' it will be on the side of safety to select the
larger.

It will be well in determining the size of a pipe to also con-
sider that the interior surface may become rough by erosion
and incrustation, thus increasing the value of the friction fac-
tor and diminishing the discharge. The increase in f from
these causes is not likely to be so great in a large pipe as in a
small one, but it is thought that for the above example they
might be sufficient to make f as large as 0.03. Applying this
value to the computation of the diameter from the given data
there is found & = 3.6 feet = about 43 inches.

The sizes of pipes generally found in the market are §, §,
1, 1}, 14, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 27, 30, 36, 40, 44,
and 48 inches, while intermediate or larger sizes must be made
to order. The computation of the diameter is merely a guide
to enable onc of these sizes to be selected, and therefore it
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.

is entirely unnecessary that the numerical work should be car-

ried to a high degree of precision. In fact, three-figure loga-

rithms are usually sufficient to determine reliable values of 4.
Prob. 100. Compute the diameter of a pipe to deliver 50

gallons per minute under a head of 4 feet when its length is
500 feet. Also when its length is 5000 feet.

ARTICLE 79. SHORT PIPES.

A pipe is said to be short when its length is less than about
500 times its diameter, and very short when the length is less
than about 50 diameters. In both cases the coefficient ¢ should
be estimated according to the condition of the upper end as
precisely as possible, and the length / should not include the
first three diameters of the pipe, as that portion properly be-
longs to the tube which is regarded as discharging into the
pipe. In attempting to compute the discharge for such pipes,
it is often found that the velocity is greater than given in
Table XVI.,, and hence that the friction factor f cannot be de-
termined. For this reason no accurate estimate can be made
of the discharge from short pipes under high heads, and fortu-
nately it is not often necessary to use them in engineering
constructions.

For example, let it be required to compute the velocity of
flow from a pipe 1 foot in diameter and 100 feet long under a
head of 100 feet, the upper end being so arranged that ¢ = 0.80,
and hence m =0.56 (Art. 73). Neglecting 7, since the pipe
has no curves or valves, the formula for the velocity becomes
/ __Zg/z——

156+ f ‘é;

and using for f the rough mean value 0.02,

v =

v= \/ T6+002X97 = 42.9 feet per second.
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Now there is absolutely no experimental knowledge regarding
the value of the friction factor f for such high velocities, but
judging from the table it is probable that / may be about
o.015. Using this instead of 0.02 gives for v the value 46 feet
per second. The uncertainty of this result should be regarded
as at least ten per cent.

_ For very short pipes there are on record a number of ex-

periments by EYTELWEIN and others, from which the coeffi-
cients of discharge have been deduced. The upper end of the
pipe being in all cases arranged like the standard tube, these
experiments give the following as mean values of the velocity :

For /= 3d, v =0.82 ¥2gh
- For /=124, v=o0.77 Y20k
For [ = 244, v=o0.73V2gk
For /= 36d, v = 0.68 ¥2gk
For /=484, v = 0.63 ¥2¢%
For [/ = 60d, 'v=0.601/2g'/t

These coefficients were deduced for small pipes under low
heads, and are to be regarded as liable to a variation of several
per cent; for large pipes and high heads they are all probably
too large.

The general equation for the velocity of discharge deduced
in Art. 76 may be applied to very short pipes by writing / — 34
in place of /, and placing for m its value in terms of ¢. It then
becomes

o= 2g/z
\/ +f1_3d.. N (19

If in this / equals 34, the velocity is

v = ¢ ¥ 2/,
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which is the same as for a short tube. If /= 12d, f =0.02,
and ¢ = 0.82, it gives v = 0.774 ¥'2g%, which agrees well with
the mean value above stated.

Prob. 1o1. Compute the discharge per second for a pipe
1 inch in diameter and 40 inches long under a head of 4 feet.

ARTICLE 80. LONG PIPES.

For long pipes the loss of head at entrance becomes very
small compared with that lost in friction, and the velocity-head
is also small. The formula for velocity deduced in Art. 76 is

in which the first term in the denominator represents the effect
of the velocity-head and the entrance-head, the mean value of
the latter being 0.5. Now it may safely be assumed that 1.5
may be neglected in comparison with the other term, when the
error thus produced in v is less than one per cent. Taking for
f its mean value, this will be the case when

1/-1.5 + o.ozé ' /
—1/_—1 = 1.01, from which 7 = 3750
0.02 ;

Therefore when / is greater than about 4000d the pipe will
be called long.

For long pipes the velocity under full flow hence is given

by the formula .
2gdh |/d/z
v = '%=8.02 72‘, « e e (57)

and the discharge per second is,
d'k

g = }nd’v = 6.30 AT (57)
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)

For computing the diameter required to deliver a given dis-
charge the formula is

d = 0.479 (f—jf—z)‘. .

(57)"
These equations show that for very long pipes the discharge
varies directly as the 2} power of the diameter, and inversely
as the square root of the length.

In the above formulas 4, %, and / are to be taken in feet, ¢ in
cubic feet per second, and f is to be found from the table in
Art. 74, an approximate value of v being first obtained by
taking f as 0.02. It should not be forgotten that these expres-
sions are of an empirical nature, and do not necessarily rep-
resent the true laws of flow ; but at present they seem to be the
representation of these laws which for long pipes best agrees
with experiments. The value of % in these formulas is also
really the friction-head %", since in their deduction the other

heads, #’, 2"/, and ;; , have been neglected ; these, however, al-

though often very small, can never be really zero.

Prob. 102. Compute the probable discharge from a pipe
26 500 feet long and 18 inches in diameter under a head of
324.7 feet.

Prob. 103. Compute the diameter required to deliver 15 000
cubic feet per hour through a pipe 26 500 feet long under a
head of 324.7 feet. If this quantity is carried in two pipes of
equal diameter, what should be their size?

ARTICLE 81. RELATIVE DISCHARGING CAPACITIES.

For orifices and short tubes the discharge under a given
head varies as the square of the diameter. In pipes of equal
length under given heads the discharges vary more rapidly
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than the squares of the diameters, owing to the'influence of fric-
tion. For a long pipe the formula for discharge is

- 2ghd’
q_‘_' i’”'\/fl ’

which shows that if / be constant the discharge varies as the
24 power of the diameter. This is a useful approximate rule
for comparing the relative discharging capacities of pipes.

Thus if there be two pipes with diameters &, and 4, the rule
gives .
g g =4db:dy, . . . . . . (58
and from this

%g%gf e e e (s

For example, if there be two pipes of the same length under
the same head, the first one foot and the second two feet in
diameter,

a=2 (3 =57

or the second pipe discharges nearly six times as much as the
first. In other words, six pipes of I foot diameter are about
equivalent to one pipe of 2 feet diameter.

As the friction factor f is not constant, the above rule is not
exact ; for, as the formula shows,
dlb ‘ d’l ‘
913%=(f) :(Z') 3 ¢ e s e o (59)

%=%%ﬂ@{-----(m’

Now as the values of f vary not only with the diameter but
with the velocity, a solution, cannot be made ex¢ept in partic-
ular cases. For the above example let the velocity be about

from which
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3 feet per second; then from the table f, = 0.023 and
Jf. = o019, and
9: = 91 (2)= (1'2)‘ = 6'291 ’

or the two-foot pipe discharges more than six times as much
as the one-foot pipe.

Prob. 104. How many pipes, 6 inches in diameter, are equiv-
alent in discharging capacity to one pipe 24 inches in diameter?

ARTICLE 82. A COMPOUND PIPE.

A compound pipe is one laid with different sizes in differ-
ent portions of its length. In such the change from one size
to another is to be made gradually by a reducer, so that losses
of head due to sudden enlargement or contraction are avoided
(Art. 68). Letd,, d,, d,, etc., be the diameters; /,, 4, /,, ctc.,
the corresponding lengths, the total length being /, 4/, 4 etc.
Let z,, 7,, etc., be the velocities in the different sections.
Neglecting the loss of head at entrance, the total head % may
be placed equal to the loss of head in friction, or

L v? L v
h=fa2 0 H G e .
' AT + A 4 2¢ + etc (60)
Now if the discharge per second be ¢,

49 49

v, = Uy =

1 TJ," 2 ;’?’ etc.

Substituting these and solving for ¢, gives ’

q—}ﬂ\/ zgh _, .+ . (60y

in which £, f,, etc,, are the friction factors corresponding to
the given diameters and velocities in Table XVI.
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For example, take the case of two sizes for which the
dimensions are

d, = 2 feet, /, = 2800 feet, )
d, = 1.5 feet, [, = 2145 feet, k = 127.5 feet.

Using for £, and f, the mean value 0.02, and making the sub-
stitutions in the formula, there is found

¢ = 27.3 cubic feet per second,

from which v, = 8.7 and v, = 15.4 feet per second.

Now from the table in Art. 74 it is seen that f, = 0.015 and
J, = o.015; and repeating the computation,

¢ = 30.1 cubic feet per second,
which gives 7, = 9.60 and 7, = 17.0 feet per second.

These results are probably as definite as the table of friction
factors will allow, but are to be regarded as liable to an uncer-
tainty of several per cent.

To determine the diameter of a pipe which will give the
same discharge as the compound one, it is only necessary to

. l
replace the denominator in the above value of ¢ by f pl where

/= I, 4 /,+ etc., and 4 is the diameter required. Taking the
values of f as equal, this gives

! L L

Applying this to the above example, it becomes

8
4945 _ 280 | 2:;;.5,

dl R 20
from which 4 = 1.68 feet, or about 20 inches.
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Compound pipes are sometimes used in order to prevent
the hydraulic gradient (Article 84) from falling below the pipe.
At Rochester, N. Y., there is a pipe 101 261 feet long, of which
50 776 feet is 36 inches in diameter, and 50 485 feet is 24 inches
in diameter. Under a head of 385.6 feet this pipe discharged
in 1876 about 14 cubic feet per second and in 1890 about .10}
cubic feet per second.

Prob. 105. Compute the discharge of the Rochester pipe,
- using the table on page 168.

ARTICLE 83. PIEZOMETER MEASUREMENTS.

Let a piezometer tube be inserted into a pipe at any
point D,, whose distance
from the reservoir is /
measured along the pipe
line. Let A,.D, be the
- vertical depth of this
-— point below the water
level of the reservoir;:
then if the flow be stopped
at the end C, the water rises in the tube to the point 4,. But
when the flow occurs, the water level in the piezometer stands
at some point C,, and the piezometric height or pressure-head
is #,, or C,D, in the figure. The distance 4,(, then represents
the velocity-head plus all the losses of head between D, and
the reservoir. If no losses of head occur except at entrance
and in friction, the value of 4,C, then is

v’
l::;g——*— -————f—f‘jzg [ (61)

Fic. s6.

from which the piezometric height can be found when v has
been determined by measurement or by computation.

For example, let the total length / = 3000 feet, 4= 6 inches,
k=g feet,and m = o0.5. Then, as in Art. 76, there is found
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f = 0.026 and v = 1.917 feet per second. The position of
the top of the piezometric column is then given by

H, = (1.5 4 0.052/,) X 0.05714,
and the height of that column is
k,=AD,— H,.

Thus if /, = 1000 feet, A, = 3.06 feet; and if /, = 2000 feet,
H, = 6,03 feet. 1f the pipe is so laid that 4,0, is g feet, the
corresponding pressure-heights are then 5.94 and 2.97 feet.

For a second piezometer inserted at D, at the distance /,
from the entrance the value of A, is

7/‘ 7}’ 112’_ 4
H,._Zg+m.2}+f72g. ... . (6)

"From this, subtracting the preceding equation, there is found

11_11 ?:

H—-H=f Pyl

(62)

The second member of this formula is the head lost in friction
in the length /, — / (Art. 74), and the first member is the
difference of the piezometer elevations. Thus is again proved
the principle of Art. 70, that the difference of two piezometer
elevations shows the head lost in the pipe between them; in
Art. 70 the elevations H, and A, were measured upward from
the datum plane, while here they are measured downward.

By the help of this principle the velocity of flow in a pipe
may be approximately determined. A line of levels is run
between the points D, and D,, which are selected so that no
sharp curves occur between them, and thus the difference
H, — H, is found; /, — /,, or the length between D, and D,,
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is ascertained by careful chaining. Then, from the above

formula,
20(H,— H)d ’
v = ,\/ fa=n " (62)

from which » can be computed by the help of the friction fac-
tors in the table of Art. 74. For example, STEARNS, in 1880,
made experiments on a conduit pipe 4 feet in diameter under
different velocities of flow.* In experiment No. 2 the length
l,— /, was 1747.2 feet, and the difference of the piezometer
levels was 1.243 feet. Assuming for f the mean value 0.02, and
using 32.16 for g, the velocity was

0 — \/64.32 X 1.243 X 4 = 3.0 feet per second.
0.02 X.1747

This velocity in the table of friction factors gives f =o0.015 for
a 4-foot pipe. Hence, repeating the computation, there is
found v = 3.50 feet per second; it is accordingly uncertain
whether the value of fis 0.015 or 0.014. If the latter value be
used there is found

v = 3.62 feet per second.

The actual velocity, as determined by measurement of the
water over a weir, was 3.738 feet per second, which shows that
the computation is in error about 4 per cent.

The gauging of the flow of a pipe by piezometers is liable
to give defective results, partly because the piezometer may
not indicate the mean pressure in the pipe owing to an imper-
fect manner of connection, and partly because the formula for
computing the velocity is merely an empirical one. The dif-
ference A, — A, in order to be reliable should be taken at

* Transactions of American Society of Civil Engineers, 1885, vol. xiv. p. 1.
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points as far apart as possible, and care be taken that no losses
of head occur between them except that due to friction. Easy
curves give no perceptible loss of head and need not be con-
sidered, but obstructions in the pipe or changes in section may
render the measurement valueless. When pressure gauges
are used, as must be often the case under high heads, care
should be taken to test them before making the experiment.
The pressure gauges, as generally graduated, give the pres-
sures in pounds per square inch. If then the readings g, and
2, are taken at D, and D,, the pressure-heads in feet are

Ak, = 2.304p, and 7%, = 2.304p,.

The' vertical distances 4,0, and 4,D, having been previously
determined by levels, the heads A, and A, are

H =AD, —k, and H,= AD, — k,,

from which A, — H, is known. Or if the vertical fall z be-
tween D, and D, is determined,

H —H =k —k,+2
which is the loss of head between D, and D,

Prob. 106. At a point 500 feet from the reservoir, and 28
feet below its surface, a pressure gauge reads 10.5 pounds per
square inch; at a point 8500 feet from the reservoir and 280.5
feet below its surface, it reads 61 pounds per square inch.
Show that the discharge per second is about 6 cubic feet if the
pipe be 12 inches in diameter. .

ARTICLE 84. THE HYDRAULIC GRADIENT.

The hydraulic gradient is a line which connects the water
levels in piezometers placed at intervals along the pipe; or
rather, it is the line to which the water levels would rise if
piezometer tubes were inserted. In Fig. 56 the line BC is the
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hydraulic gradient, and it is now to be shown that for a pipe
of uniform size this is approximately a straight line. For a
pipe discharging freely into the air, as in Fig. 56, this line joins
the outlet end with a point B near the top of the reservoir.
For a pipe with submerged discharge, as in Fig. 57, it joins the
lower water level with the point B.

Let D, be any point on the pipe distant /, from the reser-
voir, measured along the
pipe line. The piezometer
there placed rises to C,,
which is a point in the
hydraulic gradient. The
equation of this line with

[T

Fic. 57 reference to the origin 4 is

given by the formula of the preceding article,
7 s
Ho=(+m+f50

in which A, is the ordinate 4,(,, and / is the abscissa 44, pro-
vided that the length of the pipe is sensibly equivalent to its

. . . o
horizontal projection. In this equation the term (1 + ) — is
28

constant for a given velocity, and is represented in the figure
by AB or A,B,; the second term varies with /,, and is repre-
sented by B,C,. The gradient is therefore a straight line, sub-
ject to the provision that the pipe is laid approximately hori-
zontal ; which is usually the case in practice, since quite mate-
rial vertical variations may exist in long pipes without sensibly
affecting the horizontal distances.

When the variable point D, is taken at the outlet end of
the pipe, H, becomes the head /, and /, becomes the total
length / agreeing with the formula of Art. 76, if the losscs of
head due to curvature and valves be omitted. When D, is



ART. 84.] THE HYDRAULIC GRADIENT. 191

taken very near the inlet end, / becomes zero and the ordinate
H, becomes AB, which represents the velocity-head plus the
loss of head at entrance.

When easy horizontal curves exist, the above conclusions
are unaffected, except that the gradient BC is always vertically
above the pipe, and therefore can be called straight only by
courtesy, although as before the ordinate B,C, is proportiona!
to /,. When sharp curves exist, the hydraulic gradient is de-
pressed at each curve by an amount equal to the loss of head
which there occurs.

If the pipe is so laid that a portion of it rises above the hy-
draulic gradient as at D, in Fig. 58, an entire change of condi-
tion generally results. If ,

the pipe be closed at C, all A!) Aé
the piezometers stand in Dy =
the line AA, at the same ——
level as the surface of the i
reservoir. When the valve

at C is opened, the flow at Fic. 8.

first occurs under normal conditions, /Z being the head and BC
the hydraulic gradient. The pressure-head at D, is then neg-
ative, and represented by D,(,. This results in a partial vacu~
um in that portion of the pipe whereby the continuity of the
flow is broken, and as a consequence the pipe from D, to C is
only partly filled with water. The hydraulic gradient is then
shifted 'to BD,, the discharge occurs at D, under the head
A, D, while the remainder of the pipe acts merely as a channel
to deliver the flow. It usually happens that this change re-
sults in a great diminution of the discharge, so that it has
often been necessary to dig up and relay portions of a pipe line
which have been inadvertently run above the hydraulic gra-
dient. This trouble can always be avoided by preparing &
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profile of the proposed route, and drawing the hydraulic gra-
dient upon it. '

When a large part of a pipe lies above the hydraulic gradi-
ent it is called a siphon. Conditions sometimes exist which
require the construction of siphons, and to insure their suc-
cessful action pumps must be attached near the highest eleva-
tions, which may be occasionally operated to remove the air
that has accumulated, and which would otherwise cause the
flow to diminish and ultimately to cease.

The pressure-head, or piezometer height £, , at any pcint of
the pipe can be computed if the velocity of flow is known, as
also the depth A of that point below the water surface in the
reservoir. In the above figures the ordinate 4,D, is the depth
H. Then

h=H-(1+m+r3) 2,
in which » must be known by measurement or be computed by
the method of Art. 76 from the total length / and the given
head 4. This may be put into a simpler form by substituting
for v its value in terms of / and %, which gives

EEL
h=H——— %4 . . ... (63

l

14 m +f2
or for long pipes, where 1 4 72 may be neglected,

S "

Iz,=H—71z.. N (X))

This formula, indeed, can be directly derived from the above
figures by similar triangles, taking the point B as coincident
with A4, which for long pipes is allowable, since 4B is very
small (Art. 80).
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The above discussion shows that it is immaterial where the
pipe enters the reservoir, provided that it enters below the
hydraulic gradient point B. It is also not to be forgotten that
the whole investigation rests on the assumption that the lengths
/, and / are sensibly equal to their horizontal projections.

Prob. 107. A pipe 3 inches in diameter discharges 538 cubic
feet per hour under a head of 12 feet. At a distance of 300
feet from the reservoir the depth of the pipe below the water
surface in the reservoir is 4.5 feet. Compute the probable
pressure-head at this point. Ans. — 0.2 feet.

ARTICLE 85. A PIPE WITH A NOZZLE.

Water is often delivered through a nozzle in order to per-
form work upon a motor or for the purposes of hydraulic min-
ing, the nozzle being attached
to the end of a pipe which
brings the flow from a reser-
voir. In such a case it is de-
sirable that the pressure at the
entrance to the nozzle should
be as great as possible, and
this will be effected when the loss of head in the pipe is as
small as possible. The pressure column in a piezometer, sup-
posed to be inserted at the end of the pipe, as shown at C.D,
in Fig. 59, measures the pressure-head there acting, and the
height 4,C, measures the lost head plus the velocity-head, the
latter being very small.

Let / be the total head on the end of the nozzle, / its
length, &, its diameter, and v, the velocity of discharge at the
small end. Let /, 4, and v be the corresponding quantities for
the pipe. Then the effective velocity-head of the issuing stream

P -3

is oL , and the lost head is 2 — % . This lost head consists of
2¢ 28
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several parts—that lost at the entrance D,; that lost in friction
in the pipe; that lost in curves and valves, if any ; and lastly, that
lost in the nozzle. Thus,

[y

7}'

s 7 ! 1
h—z—g'—mg-l‘fgzg'-l- ”¥+m.
Here m is determined by Art. 73, f by Art. 74, #» by Art. 75,
and =, is to be found from the coefficient of velocity of the
nozzle (Art. 63) in the same manner as ». If, for instance, ¢,
for the nozzle is 0.98, then

I
m, = (5.38—'_ 1) = 0.04;

and for a perfect nozzle m, would be zero. The value of 2,
includes all losses of head in the nozzle, as » does in the en-
trance tube, so that the length /, need not be considered.

7’!
E.

The velocities v and v, are inversely as the areas of the cor-
responding sections, whence
d’
=7 d? .

Inserting this in the above expression, and solving for v, gives

the formula
A
v= 2 e - (64)
mtnt S+t m) e

from which v can be computed by the tentative method ex-
plained in Art. 76. This equation, in connection with the pre-
ceding, shows that the greatest velocity 2, obtains when 4 is as
large as possible compared to d,. As the object of a nozzle is
to utilize either the velocity or the energy of the water, a large
pipe and a small nozzle should hence be employed to give the
best result, and this is attained when the velocity v, is nearly

equal to ¥2¢g7%.
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As a numerical example, the effect of attaching a nozzle to
the pipe whose discharge was computed in Art. 77 will be con-
sidered. There /= 500, 4 =o0.25, and % = 4 feet; m =o0.3,
n =0, v =2.15 feet; and ¢ = 0.106 cubic feet, per second.
Now let the nozzie be one inch in diameter at the small end, or
d, = 0.0833 feet and ¢, = 0.98, whence m, = 0.041. Using
J = 0.029, the velocity in the pipe is

2 X 32.16 X 4

v= o.5—{—o.ozg>< 500 X 4 -} 1.041 ><8r;

whence v=1.35 feet per second. The effect of the nozzle,
therefore, is to reduce the velocity, owing to the loss of head
which it causes. The velocity of flow from the nozzle is

v, = 1.35 X 9 = 12.1§ feet per second;
and the discharge per second is
g = 0.7854 X 0.25" X 1.35 == 0.066 cubic feet .

which is about 40 per cent less than that of the pipe before the
nozzle was attached. The nozzle, however, produces a marvel-.
lous effect in increasing the energy of the discharge; for the
velocity-head corresponding to 2.15 feet per second is only
0.072 feet, while that corresponding to 12.15 feet per second is
2.30 feet, or about 32 times as great. As the total head is 4
feet, the efficiency of the stream issuing from the nozzle is
about 57 per cent.

If the pressure-head %4, at the entrance of the nozzle be
observed, either by a piezometer or by a pressure gauge, the
velocity of discharge can be computed by the formula

/ 2gh,
v, = —_—
1 dl
1 + m, — j

whose demonstration is given in Art. 63.
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Prob. 108. A pipe 3 inches in diameter and 800 feet long
runs from a reservoir to a nozzle which drives a water motor.
There are no curves or valves in the pipe and no loss of head
.at entrance or in the nozzle. The head on the nozzle is 100
feet. Find the diameter of the nozzle which will furnish the
maximum discharge. Also the diameter which will give the
maximum horse-power. (See Art. 150.)

ARTICLE 86. HOUSE SERVICE PIPES.

A service pipe which runs from a street main to a house is
connected to the former at right angles, and usually by a
“ferrule” which is smaller in diameter than the pipe itself.
The loss of head at entrance
is hence larger than in the
cases before discussed, and =
should probably be taken as
at least equal to unity. The
pipe, if of lead, is frequently
carried around sharp corners

Fic. 6o, by curves of small radius; if
of iron, these curves are formed by pieces forming a quadrant
of a circle into which the straight parts are screwed, the radius
of the centre line of the curve being but little larger than the
radius of the pipe, so that each curve causes a loss of head
equal nearly to double the velocity-head (Art. 75). For new
clean pipes the loss of head due to friction may be estimated
by the rules of Art. 74.

A water main should be so designed that a certain minimum
pressure-head 4, exists in it at times of heaviest draught. This
pressure-head may be represented by the height of the piezom-
eter column A48, which would rise in a tube supposed to be
inserted in the main, as in Fig. 60. The head % which causes
the flow in the pipe is then the difference in level between
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the tup of this column and the end of the pipe, or AC. In-
serting for % this value, the formulas of Arts. 76 and 77 may be
applied to the investigation of service pipes, in the manner
there illustrated. As the sizes of common house-service pipes
are regulated by the practice of the plumbers and by the market
sizes obtainable, it is not often necessary to make computations
regarding them.

The velocity of flow in the main has nodirect influence upon
that in the pipe, since the connection is made at right angles.
But as that velocity varies, owing to-the varying draught upon
the main, the pressure-head %, is subject to continual fluctua-
tions. When there is no flow in the main, the piezometer
column rises until its top is on the same level as the surface of
the reservoir; in times of great draught it may sink below C, so
that no water can be drawn from the service pipe.

The detection and prevention of the waste of water by con-
sumers is a matter of importance in cities where the supply
is limited and where meters are not in use.- Of the many
methods devised to detect this waste, one by the use of pie-
zometers may be noticed, by which an inspector without enter-
ing a house may ascertain whether water is being drawn within,
and the approximate amount per second. Let 47 be the street
main from which a service pipe MOH runs to a house H. At
the edge of the sidewalk a tube OP is connected to the service
pipe, which has a three-way cock at O, which
can be turned from above. The inspector, y
passing on his rounds in the night-time, at-
taches a pressure gauge at P and turns the
cock O so as to shut off the water from the
house and allow the full pressure of the main - FiG. 6r.

2, to be registered. Then he turns the cock so that the water
may flow into the house, while it also rises in OP and registers
the pressure p,. Then if p, is less than p, it is certain that a
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waste is occurring within the house, and the amount of this may
be approximately computed if desired, in the manner indicated
in Art. 70, and the consumer be fined accordingly.*

Prob. 109. Describe a water-pressure regulator to be placed
between the main and the house so that the pressure in the
service pipes may never exceed a given quantity—say 40 pounds
per square inch.

ARTICLE 87. A WATER MAIN.

The simplest case of the distribution of water is that where

a single main is tapped by a number of service pipes near its
end, as shown in Fig. 62. In designing such a main the prin-
cipal consideration is that it should

3 E——  be large enough so that the pres-

% —— sure-head %, when all the pipes

Ha -——  are in draught, shall be amply suf-
oo s ~— ficient to deliver the water into
< 1T ] the highest houses along the line.

Fic. 6a. FANNING recommends that this
pressure-head in commercial and manufacturing districts should
not be less than 150 feet, and in suburban districts not less
than 100 feet. The height A to the surface of the water in
the reservoir will always be greater than %, , and the pipe is to
be so designed that the losses of head may not reduce #%,
below the limit assigned. The head /% to be used in the for-
mulas is the difference &/ — /%,. The discharge per second ¢
being known or assumed, the problem is to determine the
diamcter 4 of the main.

A strict theoretical solution of even this simple case leads
to very complicated calculations, and in fact cannot be made
without knowing all the circumstances regarding each of the
service pipes. Considering that the result of the computation

* This briefly describes CHURCH's water-waste indicator.
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is merely to enable one of the market sizes to be selected, it is
plain that great precision cannot be expected, and that ap-
proximate methods may be used to give a solution entirely
satisfactory. It will then be assumed that the service pipes
are connected with the main at equal intervals, and that the
discharge through each is the same under maximum draught.
The velocity » in the main then decreases, and becomes 0 at
the dead end. The loss of head per linear foot in the length
/, (Fig. 62) is hence less than in /. To estimate this, let v, be
the velocity at a distance x from the dead end ; then

v, =

2 v.

SR

The loss of head in friction in the length dx is

oxr v} 2

0% fd 2E'—fdl’ i.

Ox;

and hence between the limits 0 and /, that loss is

0 s
3d 2’

provided that / remains constant. This is really not the case,
but no material error is thus introduced, since / must be taken
larger than the tabular values in order to allow for the deteri-
oration of the inner surface of the main. The loss of head in
friction for a pipe which discharges uniformly along its length
may therefore be taken at one-third of that which occurs when
the discharge is entirely at the end.

o= ... (69)

Now neglecting the loss of head at entrance and the effec-
tive velocity-head of the discharge, the total head % is entirely
consumed in friction, or

= fd2g+f3dzg
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Placing in this for v its value in terms of the total discharge ¢,
and solving for d, gives
16fq’

This is the same as the formula of Art. 80, except that / has
been replaced by / 4 }/,. The diameter in feet then is

= o479 ¢+ 440 (7Z)',

as in the case of long pipes.

For example, consider a village consisting of a single street,
whose length /, = 3000 feet, and upon which there are 100
houses, each furnished with a service pipe. The probable
population is then 500, and taking 100 gallons per day as the
consumption per capita, this gives the average discharge per

second
500 X 100

= 748 X 3600 X 24 0.0774 cubic feet;

and as the maximum draught is often double of the average,
¢ will be taken as 0.15 cubic feet per second. The length /
to the reservoir is 4290 feet, whose surface is 9o.5 feet above
the dead end of the main, and it is required that under full
draught the pressure-head in the main shall be 75 feet. Then
& = go.5 — 75 = 15.5 feet, and taking / = 0.03 in order to be
on the safe side, the formula gives

d = 0.36 feet = 4.3 inches.

Accordingly a four-inch pipe is nearly large enough to satisfy
the imposed conditions.

To consider the effect of fire service upon the diameter of
the main, let there be four hydrants placed at equal intervals
along the line /,, each of which is required to deliver 20 cubic
feet per minute under the same pressure-head of 75 feet. This
gives a discharge 1.33 cubic feet per second, or, in total,
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¢ = 1.33 + 0.15 = 1.5 cubic feet. Inserting this in the for
mula, and using for f the same value as before,

d = 0.897 feet = 10.8 inches.
Hence a ten-inch pipe is at least required to maintain the
required pressure when the four hydrants are in full draught at
the same time with the service pipes.

Prob. 110. Compute the velocity v and the pressure-head %,
for the above example, if the main be 10 inches in diameter
and the discharge 1.5 cubic feet per second.

ARTICLE 83. A MAIN WITH BRANCHES.

In Fig. 63 is shown a main of length / and diameter &,
having two branches with lengths /, and /,, and diameters &,

. Fia. 63.
and 4,. These being given, as also the heads A, and A, under
which the flow occurs, it is required to find the discharges ¢, and
¢,- Let z, v, and v, be the corresponding velocities; then for
long pipes, in which all losses except those due to friction may
be neglected,

ll vl'
H, J’=flizg,
l’ v”
Hl_y:f;;{_ 2_g‘_)

where y is the difference in level between the reservoir surface
and the water level in a piezometer supposed to be inserted at
the junction. This y is the friction-head consumed in the large
main, or
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Inserting this in the two equations, and placing for the veloci-
ties their values in terms of the discharges, they become

H =+ +sigsal
Lo (66)
2Ty, = fd.(9.+q.)’+f.d.q.

<rom which ¢, and ¢, are best obtained by trial; although by
solution the value of each may be directly expressed in terms
of the given data, the expressions are too complicated for
general use.

When it is required to determine the diameters from the
given lengths, heads, and discharges, there sare three unknown
quantities, 4, &, , 4, , to be found from only two equations, and
the problem is indeterminate. If, however, 4 be assumed,
values of 4, and 4, may be found; and as & may be taken at
pleasure, it appears that an infinite number of solutions is pos-
sible. Another way is to assume a value of , corresponding
to a proper pressure-head at the junction; then the diameters
are directly found from the usual formula for long pipes,

d=0.479 (fq)

in which £ is replaced by y for the large main, and by H, — »
and A, — y for the smaller ones, ¢ for the first being ¢, + ¢,,
and for the others ¢, and ¢, respectively.

A water-supply system consists of a principal main with many
sub-mains as branches. In designing these the quantities of
water to be furnished are assumed from the present and prob-
able future population, which in small towns requires from 40
to 100 gallons per capita per day, and in large cities from 100
to 150 gallons. This should be furnished under heads sufficient
to raise the water into the highest houses, as also for use in
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cases of fire. As the problem of computing the diameters
from the given data is indeterminate, it will probably be as well
to assume at the outset the sizes for the principal mains. The
velocities corresponding to the given quantities and the as-
sumed sizes are then computed, and from these the pressure-
heads at a number of points are found. If these are not satis-
factory, other sizes are to be taken and the computation be
repeated. The successful design will be that which will furnish
the required quantities under proper pressures with the least
expenditure.

Prob. 111. In Fig. 63 let ¢, = 0.5 and ¢, = 0.4 cubic feet;
H,= 140 and H, = 125 feet; /, = 3810, /, = 2455, and /=
12 314 feet. If 4, equals &, find the values of 4 and 4, and
also the pressure-head at the junction if its depth below the
reservoir level is 108 feet.

ARTICLE 89. PUMPING THROUGH PIPES.

When water is pumped through a pipe from a lower to a
higher level, the power of the pump must be sufficient not only
to raise the required amount in a given time, but also to over-
come the various resistances to flow. The head due to the re-
sistances is thus a direct source of loss, and it is desirable that
the pipe be so arranged as to render this as small as possible.

Let w be the weight of a cubic foot of water and ¢ the
quantity raised per second through the height A, which, for
example, may be the difference in level ___,
between a canal C and a reservoir R, as b=\
in Fig. 64. The useful work done by
the pump in each second is wg/. Let 4’
be the head lost in entering the pipe at
the canal, %" that lost in friction in the
pipe, and 4’ all other losses of head, such as those caused by

Fic. 64.
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curves, valves, and by resistances in passing through the pump
cylinders. Then the total work performed by the pump per
second is

k=wgH 4 wgl + 7'+ K"). . . . (67)

Inserting for the lost heads their values, this becomes

kzwq]{-i-wq(m—}-ff?—{-n);;; N (724

In order, therefore, that the losses of work may be as small as
possible, the velocity of flow through the pipe should “be low;
and this is to be effected by making the diameter of the pipe
large.

For example, let it be required to determine the horse-
power of a pump to raise 1 200000 gallons per day through a
height of 230 feet, when the diameter of the pipe is 6 inches
and its length 1400 feet. The discharge per second is

B 7-481 Ixzcz)z 0203600- = 1.86 cubic feet,

q

and the velocity of flow is

1.86

Y= 78X o5 = 9.47 feet per second.

The probable head lost at entrance into the pipe is
k= v o 1.39 = 0.7 feet
_0.52g = 0.5 X 1.39 = 0.7 feet.

When the pipe is new and clean the friction factor f is
about ¢.020, as shown by Table XVI; then the loss of head
in friction is ‘

4

X X 1.39 = 77.8 feet.

"__ T4
k' = 0.020 X 03
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The other losses of head depend upon the details of the valve
and pump cylinder; if these be such that » = 4, then

k" = 4 X 1.39 = 5.6 feet.
The total losses of head hence are

AR+ 7" = 84.1 feet.
The work to be performed per second by the pump now is

% = 62.5 X 1.86(230 4 84.1) = 36 510 foot-pounds,
and the horse-power expended is
HP = 36510 = 66.4.
550

If there were no losses in friction and other resistances the
work done would be simply

k= 62.5 X 1.86 X 230 = 26 740 foot-pounds,
and the corresponding horse-power would be

26740
550

HP = 48.6.

Accordingly 17.8 horse-power is wasted in injurious resistances.

For the same data let the 6-inch pipe be replaced by one
14 inches in diameter. Then, proceeding as before, the velocity
of flow is found to be 1.80 feet per second, the head lost at
entrance 0.03 feet, the head lost in friction 1.23 feet, and that
lost in other ways 0.20 feet. The total losses of head are thus
only 1.46 feet, as against 84.1 feet for the smaller pipe, and the
horse-power required is 48.9, which is but little greater than
the theoretic power. The great advantage of the larger pipe
is thus apparent, and by increasing its size to 18 inches the
losses of head may be reduced so low as to be scarcely appre-
ciable in comparison with the useful head of 230 feet.

A pump is often used to force water directly through the
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mains of a water-supply system under a designated pressure.
The work of the pump in this

Dl B ‘:-A __ case consists of that required to
maintain the pressure and that

T i required to overcome the fric-

- M tional resistances. Let %, be the
c M \ ¢ pressure-hecad to be maintained

pasE==— at the end of the main, and z the

"~ 3 height of the main above the
Fic. 6s. level of the river from which the
water is pumped ; then %, + z is the head /, which corresponds

" to the useful work of the pump, and, as before,

bE=woH -+ wqll' + #'+ 7).
To reduce these injurious heads to the smallest limits the
mains should be large in order that the velocity of flow may
be small. In Fig. 65 is shown a symbolic representation of
the case of pumping into a main, 2 being the pump, C the
source of supply, and DM the pressure-head which is main-
tained upon the end of the pipe during the flow. At the
pump the pressure-head is AP, so that 4D represents the hy
draulic gradient for the pipe from P to M. The total work of
the pump may then be regarded as expended in lifting the water
from C to A, and this consists of three parts, corresponding to
the heads CM or 2, MD or %,, and AB or i/ + X" + &', the
first overcoming the force of gravity, the second delivering
the flow under the required pressure, while the last is trans-
formed into heat in overcoming friction and other resistances.
In this direct method of water supply a standpipe, 47, is often
erected near the pump, in which the water rises to a height

corresponding to the required pressure, and which furnishes
a supply when a temporary stoppage of the pumping engine
occurs.

Prob. 112. Compute the horse-power of a pump for the fol-
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lowing data, neglecting all resistances except those due to fric-
tion: g = I.5 cubic feet per second, which is distributed uni-
formly over a length / = 3000 feet, the remaining length of
the pipe being 4290 feet; d = 10 inches, /7 = 86.4 feet.

ARTICLE go. FIRE HOSE.

Fire hose is generally 24 inches in diameter, and lined with
rubbeér to reduce the frictional losses. The following values
of the friction factor f have been deduced from the experi-
ments of FREEMAN :¥*

Velocity in feet per second, 7 = 4 6 10 15 20

Unlined linen hose, S =o0.038 0.038 0.037 0.035 0.034

Rough rubber-lined cotton, f = 0.030 0.031 0.031 0.030 0.029

Smooth rubber-lined cotton, f = 0.024 0.023 0.022 0.0I9 0.018

Discharge, gallons per minute = 61 92 153 230 306
By the help of this table computations may be made on the
pumping of water through hose for delivery in fire streams or
for other purposes, in the same manner as for pipes. It is seen
that the friction factors for the best hose are slightly less than
those given for 23-inch pipes in Table XVI.

The loss of head in a long hose becomes so great even
under moderate velocities as to consume a large proportion of
the pressure exerted by the hydrant or steamer. For example,
let this primitive pressure be 122 pounds per square inch, cor-
responding to a head of 281 feet, and let it be required to find
the pressure-head in 23-inch rough rubber-lined cotton hose at
1000 feet distance, when a nozzle is used which discharges 153
gallons per minute, the hose being laid horizontal. In cubic
.feet per second the discharge is

7= 748 x 60~ O340

* Hydraulics of Fire Streams. Transactions American Society of Civil
Engineers, November, 1889.
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and the velocity in the hose is accordingly found to be

v=11.=

Ind* =

Hence the loss of head in friction is ,

10.0 feet per second

I v
/A —_ —
k _-fd Py 231 feet,
and consequently the pressure-head at the entrance to the
nozzle is

/2, = 281 — 231 = 50 feet,

which corresponds to about 22 pounds per square inch. The
remedy for this great reduction of pressure is to employ a
smaller nozzle, thus decreasing the discharge and the velocity
in the hose; but if both head and quantity of discharge are
desired they can only be secured either by an increase of pres-
sure at the steamer or by the use of a larger hose.

Prob. 113. When the pressure gauge at the steamer indi-
cates 83 pounds per square inch, a gauge on the leather hadse
800 feet distant reads 25 pounds. Compute the value of the
friction factor £, the discharge per minute being 121 gallons.

Ans. 0.036.

ART. g1. LAMPE'S FORMULA.

There have been made many attempts to express the mean
velocity.v without the use of a factor or coefficient of friction.
That this can be empirically done, within the range of experi-
mental results, is plain by observing that the values of f in
Table XVI show a regular variation with the diameter 4. For
long pipes f is then a function of & and v, or a function of &, £,
and /. The simplest expression of the relation between these
quantities is

k\Y

v = adﬁ(7)' ,
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in which a, B, and y are empirical constants. The investiga-
tions of LAMPE have determined probable values for these
constants, giving-

D )

v = 77.7(1“69‘(7

in which 4, %, and / are to be taken in feet, and v will be

. found in feet per second, This formula is only applicable to
long circular pipes with surfaces clean or in fair condition.

From this formula the discharge ¢ may be expressed
Jr\ o558
g= 61.0&-"9‘(7‘) Y ()4
and the diameter required to discharge a given quantity is

d =0-2179°'3”(£)m. N () &

By the use of these formulas all of the preceding problems
concerning long pipes may be directly solved without the use
of the tables of friction factors. They show that the discharg-
ing capacity of long pipes varies about as the 2.7 power of the
diameter (Art. 80).

As an example, let it be required to find the diameter of a
pipe which is to discharge 177 300 gallons per hour, its length
being 75 000 feet and the head 135 feet. Here '

177 300 .
7= 3600 X 7481 = 6.583 cubic feet,
/ _75000 .
and 7= ,35-—555-6,

whence by the formula .
d = 0.217(6.583)*¥(555.6)>**,

d = 1.61 feet = 19.3 inches,
so that a 20-inch pipe should be selected.

which gives

Prob. 114. Solve Problems 102 and 103 by the use of the
above formulas.
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ARTICLE 92. VERY SMALL PIPES.

The preceding investigations and rules apply to pipes greater
than about 0.5 inches in diameter, and are not valid for very
small pipes. The laws of discharge in these are not understood
from a theoretical basis, but experiments made by POISEUILLE
in 1843, in order to study the phenomena of the flow of blood’
in veins and arteries, have settled beyond question that they
are materially different from those which govern large pipes at
ordinary velocities. His investigations proved that for pipes
whose diameters are less than about 0.7 millimeters or 0.03
inches, the velocity is expressed by the simple relation

v=a—,

in which a is a factor nearly constant at a given temperature.
The velocity then varies directly with the head and with the
square of the diameter, and inversely with- the length. It is
here supposed that the pipe is long, so that losses of head due
to entrance may be neglected.

‘Later researches indicate that these laws are also true for
large pipes, provided the velocity be small; and that for a
given pipe there is a certain critical velocity at which the law
changes, and beyond which

hd
7’=ﬂ —1_7

as for the case of common pipes. This critical point appears
to be that at which the filaments cease to move in parallel
lines, and pass in sinuous paths from one side of the pipe to
the other. For a very small pipe the velocity may be high
before this point is reached ; for a large pipe it happens at very
low velocities.
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In Art. 74 it was mentioned that the frictional resistances
in a pipe consist of those along the inner surface, and of those
met among the particles in their sinuous motion. Since in
small pipes the latter do not exist, it appears from POISEUILLE’S
formula that the head lost in friction along the inner surface

may be expressed by p
v

Sar N

kl’

Now if the law were known which governs the loss in internal
friction it might be possible to add this to the preceding, and
thus obtain an expression for loss of head in which the friction
factor would be a quantity dependent only upon the nature of
the surface. Thus far, however, efforts in this direction have .
not been practically successful.

The effect of temperature on the flow has not been consid-
ered in the previous articles, and in fact but little is known re-
garding ir, except that a very slight increase in discharge is prob-
able for a high rise in the temperature of the water. For very
small pipes, however, POISEUILLE found that a marked in-
crease in velocity and discharge resulted, the value of a being
about twice as great at 45° Centigrade as at 10°.

Prob. 115. The value of a for small pipes is about 184
when %4, &, /, and v are in millimeters, and the flow occurs at
10° Centigrade. Find its value when the foot is the unit of
measure.
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CHAPTER VIIL
FLOW IN CONDUITS AND CANALS.

ARTICLE 93. DEFINITIONS.

Water is often conveyed from place to place in artificial
channels, such as troughs, aqueducts, ditches, and canals, there
being no head to cause the flow except that due to the slope.
The word conduit will be used as a general term for a channel
lined with timber, mortar, or masonry, and will also include
metal pipes, troughs, and sewers. Conduits may be either
open as in the case of troughs, or closed as in sewers and most
aqueducts. Streams flow in natural channels eroded in the
earth, and include small brooks as well as the largest rivers.
Most of the principles relating to conduits and canals apply
also to streams, and the word channel will be used as applica-
ble to all classes.

The wetted perimeter of the crosssection of a channel is
that part of its boundary which is in contact with the water.
Thus, if a circular sewer of diameter & be half full of water
the wetted perimeter is 374. In this chapter the letter p will
designate the wetted perimeter.

The hydraulic radius of a water crosssection is its area
divided by its wetted perimeter. Let a be the area and r the
hydraulic radius ; then

ry =

SR

The letter » is of frequent occurrence in formulas for the flow
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in channels; it is a linear quantity, which is always expressed
in the same unit as p. It
is also frequently called “
the hydraulic depth or hy-
draulic mean depth, be-
cause for a shallow section its value is but little less than the
mean depth of the water. Thus in Fig. 66, if 4 be the breadth
on the water surface, the mean depth is @ + 4, and the hy-
draulic radius is @ + p; and these are nearly equal, since p is
but slightly larger than 4.

The hydraulic radius of a circular cross-section filled with
water is one-fourth of the diameter; thus:

_a_}:rd’_
r_;,_. nd =

‘The same value is also applicable to a circular section half
filled with water, since then both area and wetted perimeter
are one-half their former values.

The slope of the water surface in the longitudinal section,
designated by the letter s, is the ratio of the fall % to the length
Z in. which that fall occurs, or

S=

4
z

“The slope is hence expressed as an abstract number, which is

independent of the system of measures employed. To deter-
mine its value with precision % must be obtained by referring
the water level at each end of the line to a bench mark by the
help of a hook gauge or other accurate means, the benches be-
ing connected by level lines run with care. The distance /is
measured along the inclined channel, and it should be of con-
siderable length in order that the relative error in 42 may not
be large.
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If there be no slope, or s = o, there can be no flow. But if
there be even the smallest slope the force of gravity furnishes
a component acting down the inclined surface, and motion en-
sues. The velocity of flow evidently increases with the slope.

The flow in a channel is said to be permanent when the
same quantity of water per second passes through each cross-
section. If an empty channel be filled by admitting water at
its upper end the flow is at first non-permanent or variable, for
more water passes through one of the upper sections per second
than is delivered at the lower end. But after sufficient time
has elapsed the flow becomes permanent ; when this occurs the
mean velocities in different sections are inversely as their

areas (Art. 19).

Uniform flow is that particular case of permanent flow
where all the water cross-sections are equal, and the slope of the
water surface is parallel to that of the bed of the channel. If

" the sections vary the flow is said to be non-uniform, or variable,
although the condition of permanency is still fulfilled. In this
chapter only the case of uniform flow will be discussed.

The velocities of different filaments in a channel are not
equal, as those near the wetted perimeter move slower than
the central ones owing to the retarding influence of friction.
The mean of all the velocities of all the filaments in a cross-
section is called the mean velocity . Thus if 2/, 9", etc., be
velocities of different filaments,

v r’
7/:”—”—#, N ()]
in which 7 is the number of filaments. Let a be the area of
the cross-section and &’ that of one of the elementary filaments;

a
then n = o and hence

av = a'(v 4+ V"' 4 etc.).
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But the second member is the discharge ¢. Therefore the
mean velocity may be also determined by the relation

v=2. . . . . . . . (69

The filaments which are here considered are in part imaginary,
for experiments show that there is a constant sinuous motion
of particles from one side of the channel to the other. The
best definition for mean velocity hence is, that it is a velocity
which multiplied by the area of the cross-section gives the dis-
charge, or v =g + a.

Prob. 116. Compute the hydraulic radius of a rectangular
trough whose width is 4.4 feet and depth 2.2 feet.

Prob. 117. Compute the mean velocity in a circular sewer
of 4 feet diameter when it is half filled and discharges 120 gal-
lons per second.

ARTICLE g4. FORMULA FOR MEAN VELOCITY.

When all the wetted cross-sections of a channel are equal,
and the water is neither rising nor falling, having attained a con-
dition of permanency, the flow is said to be uniform. This is
the case in a conduit or canal of constant size and slope whose
supply does not vary. The same quantity of water per second
then passes each cross-section, and consequently the mean
velocity in each section is the same. This uniformity of flow
is due to the resistances along the interior surface of the chan-
nel, for were it perfectly smooth the force of gravity would
cause the velocity to be accelerated. The entire energy of
the water due to the fall % is hence expended in overcoming
frictional resistances along the length /. Let I be the weight
of water per second which passes any cross-section, & the force
of friction or resistance per square foot of the interior surface
of the channel, p the wetted perimeter, and » the mean veloci-
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Now .suming that the friction is uniform over the entire

... e whose area is p/, the total resisting force is Fp/,

o ' assuming that the velocity along the surface is the
« .= o the total resisting work is Fplv. Hence

Fply = Wh.

\
i, the value of W is wav where a is the area of the cross-
«vuon, and w is the weight of a cubic unit of water; accord-

gy,

Fpl = wak,
or
ak
F = w ;7'
Hcre; is the hydraulic radius », and ;‘— is the slope s, and the
value of Fis
F = wrs.

This is an approximate expression for the resisting force of
friction per square foot of the interior surface of the channel.

In order to establish a formula for mean velocity the value
of F must be expressed in terms of v, and this can only be
done by studying the results of experiments. These indicate
that / is approximately proportional to the square of the mean
velocity. Therefore, if ¢ be a constant,

v=c¥rs. . . . . . . . (70)

This is an empirical expression for the law of variation of the

mean velocity with the hydraulic radius and slope of the chan.

nel. The quantity ¢ is a coefficient which varies with the

degree of roughness of the bed and with other circumstances.
ct of the following articles to state values of ¢ for
ses of conduits and canals.

nethod of establishing the above formula is simi-
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lar to that used in Art. 74 for pipes. The total head /% repre-
sents the loss of head in friction ; this should vary directly with
2 and /, and it should vary inversely with &, because for a given
wetted perimeter the friction will be the least for the largest a.
It should also vary as the square of the velocity. Hence

pl v
4
h=f a2
in which f” is an abstract number depending upon the charac-
ter of the surface. From this the value of v is

2gak __ ,
A= c¥rs, . . . . . (70

in which ¢ is the square root of 2¢ <+ f’. Notwithstanding
these reasonings the formula cannot be called rational; it is
merely an empirical expression whose basis is experiment.

To determine values of the coefficient ¢ the quantities v, 7,
and s are measured for particular cases, and then ¢ is computed.
To find 7 and s linear measurements are alone required. To
determine v the flow must be gauged either in a measuring
vessel or by an orifice or weir, or, if the channel be large, by
floats or other indirect methods described in the next chapter.
It being a matter of great importance to establish a satisfactory
formula for mean velocity, thousands of such gaugings have
been made, and from the records of these the values of the
coefficients have been deduced. It is found that ¢ lies between
30 and 160 when # and 7 are expressed in feet, and that its
value is subject to variation, not only with the character of the
surface, but also with the hydraulic radius and slope.

Prob. 118. Compute the value of ¢ for a circular masonry
conduit 4 feet in diameter which delivers 29 cubic feet per
second when running half full, its slope or grade being 1.5 feet
in 1000 feet. Ans. 11g.
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ARTICLE g5. CIRCULAR ConDUITS, FrLL OR HALF FULL.

When a circular conduit of diameter & runs either full or
half full of water the hydraulic radius is {2, and the formula
for mean velocity is

v=cVrs=c.}Vds.

The velocity can then be computed when ¢ is known, and for
this purpose the following table gives SMITH’S values of ¢ for

TABLE XVII. COEFFICIENTS FOR CIRCULAR CONDUITS.

—
Diameter Velocity in Feet per Second.
in
Feet. b 2 3 4 6 10 ’ 15

I. 96 104 109 112 116 121 124
I.5 103 111 116 119 123 129 132
2. 109 116 121 124 129 134 138
2.5 113 120 125 128 133 139 143
3. 117 124 128 132 136 | 143 147
3.5 120 127 131 135 139 | 146 151
4. 123 130 134 137 142 150 155
5. 128 134 139 142 147 155
6. 132 138 142 145 150
7- 135 141 145 149 153
8. 137 143 148 151

pipes and conduits having quite smooth interior surfaces, and
no sharp bends.* The discharge per second then is

g=av=c.}aVds,
in which a is either the area of the circular cross-section or one

half that section, as the case may be.

To use this table a tentative method must be employed,

* Hydraulics, p. 271.

~
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since ¢ depends upon the velocity of flow. For this purpose'
there may be taken roughly,

mean ¢ = 125,

and then v may be computed for the given diameter and slope ;
a new value of ¢ is then takep from the table and a new v com-
puted; and thus, after two or three trials, the probable mean
velocity of flow is obtained. The value of & must be expressed
in feet.

For example, let it be required to find the velocity and dis-
charge of a semicircular conduit of 6 feet diameter when laid
on a grade of o.1 feet in 100 feet. First,

v =125 X } ¥6 X 0.001 = 4.8 feet.
For this velocity the table gives 147 for ¢; hence

v = 147 X $ ¥0.006 = 5.7 feet.
Again, from the table ¢ = 150, and

v = 150 X } ¥0.006 = 5.8 feet.

This shows that 150 is a little too large; for ¢ = 149.5, v is
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